
Milestones:
The Story of
WordPress

GITHUB.COM / WORDPRESS / BOOK

Milestones: The Story of WordPress

Milestones: The Story of WordPress is licensed under Creative Commons and the GPL.

https://github.com/WordPress/book/blob/master/license-cc.txt
https://github.com/WordPress/book/blob/master/license-gpl.txt

Contents

Introduction 1

I. Part One

Hello World1. 16

The Only Blogger in Corsica2. 21

The Blogging Software Dilemma3. 31

II. Part Two

Guiding Principles4. 36

The GPL5. 39

WordPress' First Developers6. 44

Inside the Bazaar7. 49

Support and Documentation8. 54

Freedom Zero9. 59

WordPress 1.2 "Mingus"10. 64

The Birth of wp-hackers11. 68

III. Part Three

Themes12. 74

Development in a Funnel13. 79

A New Logo14. 83

WordPress Incorporated15. 91

WordPress.com16. 97

Akismet17. 101

Shuttle18. 104

Automattic19. 118

Growing Pains20. 124

WordCamp 200621. 128

Speeding Up the Release Cycle22. 131

Trademarks23. 135

Habari24. 139

IV. Part Four

Creating a Folksonomy25. 148

Sponsored Themes26. 157

Update NotiHcations27. 165

Happy Cog Redesign28. 171

Premium Themes29. 180

V. Part Five

Riding the Crazyhorse30. 190

Themes Are GPL Too31. 199

Improving Infrastructure32. 203

Meeting in Person33. 207

Update NotiHcations Redux34. 212

The WordPress Foundation35. 216

WordPress 3.036. 221

The WordCamp Guidelines37. 229

Dealing With a Growing Project38. 232

Thesis39. 236

VI. Part Six

The Transition to Release Leads40. 241

The Community Summit41. 247

The Spirit of the GPL42. 250

The Problem with Post Formats43. 255

MP644. 259

Introduction

We live in a highly networked world where billions of people engage and

interact with one another online. Global communication is instantaneous.

We can converse across the world, learn about other cultures, and meet

new people without leaving our own home. The ways in which people get

online are as varied as the people who populate the internet. People connect

on social media, communicate using applications, and build websites using

everything from hand-coded CSS and HTML, to content management sys-

tems.

The web is built on free and open source software: server-side software like

Apache and Nginx, application frameworks like Ruby on Rails, databases like

MySQL, and security cryptographic protocols like OpenSSL. This software is

often built by hackers and hobbyists, who distribute it freely, hack on it, patch

it, and share it with one another. But free software isn’t just the domain of

hardcore coders — those who build the underlying fabric of the web. Mil-

lions of people, for example, use tools like the open source browser Firefox to

browse the web.

And then there’s WordPress, the user-focused publishing platform built to

make it easy for anyone to publish online. At the time of this writing (2015),

it powered 25% of all websites, and is used by millions of people worldwide.

Users vary from casual bloggers to international news sites, small businesses

to big businesses, non-profits, networks, and personal portfolios. What

started out as a blogging platform is now the most widely used content man-

agement system on the internet. Some developers even use it as an applica-

tion framework.

With so much of the internet powered by WordPress, it’s no surprise that the

people who use it are as diverse as those who use the internet itself. Each

website represents a different story — a different individual or organization

1

http://w3techs.com/technologies/details/cm-wordpress/all/all

who has a stake in being online and providing a window into their world. This

book tells the story of WordPress, a tool created by a couple of hackers and

developed by volunteers from all over the world. But before that story begins,

it’s worth looking at the stories of just a few of those who have been empow-

ered by the software.

Fighting Human Rights Abuse

Thailand, near the Burmese Border

Burma is the stage for one of the longest-running civil wars in history. Since

1948, different ethnic minorities have struggled for independence. In ethnic

areas, the military junta has committed innumerable atrocities against the

people of Burma, including torture, executions, rape, kidnapping, and chemi-

cal attacks. It has left millions of people living like refugees in their own coun-

try, displaced from their homes and under attack from their government.

Since 1997, the Free Burma Rangers (FBR) have delivered humanitarian

relief to internally displaced persons (IDPs). Operating from regions around

Burma’s borders, relief teams of up to six people enter Burma’s jungles to

provide emergency medical relief, humanitarian assistance, and counselling

to IDPs. The teams are made up of Burmese nationals, many of whom have

themselves been displaced and been victims of the government’s military

rule.

Milestones: The Story of WordPress

2

Medics from the Free Burma Rangers in the Held.

In addition to humanitarian relief, every team has a member who documents

atrocities using photography, video, and interviews. This evidence is trekked

out of the jungle and over the border, and forms an archive of the human

rights abuses committed by the junta.

For many years, these documents were simply stored on paper. Offices full

of paper held evidence of years of abuse. The information was tabulated into

spreadsheets and documents. Photographs and videos were stored on stacks

of hard drives. To find information, a person had to spend hours looking for

it; there was no way to look at the data in aggregate, to find patterns and

trends.

Volunteers converted hundreds of thousands of records into a digital data-

base that allows rangers to quickly upload and disseminate information. The

system needed to be usable by the rangers, many of whom had little comput-

ing experience and speak different languages and dialects. The site was user

Milestones: The Story of WordPress

3

http://milestones.pressbooks.com/files/2015/11/fbr.jpg
http://milestones.pressbooks.com/files/2015/11/fbr.jpg

tested in a jungle hut via a solar-powered laptop using a satellite internet con-

nection.

User testing in a hut in the jungle.

Reports are stored on two sites: an internal site for storing and tracking

reports, and a public-facing site that disseminates information to the public.

Both websites use WordPress. While on a relief mission, a team documents

human rights violations by taking photos and recording interviews. They do

the same for any patients they see, recording everything in a paper journal.

When the relief mission is complete, the journal and SD card are trekked out

of the jungle, and the information is added to the website.

The digitization of these reports has meant that volunteers can spend less

time digging for information and more time improving relief, training, and

providing aid. It’s made analysis more efficient and effective, allowing train-

ing teams to look for patterns that will improve aid.

But it’s also helped the FBR to easily disseminate information about atroci-

ties to the world. In December 2012, one of the IDPs working with the Free

Burma Rangers hiked through the jungle to deliver video and photographs

of the Burmese military using attack helicopters and jet fighters in air strikes

against ethnic rebels in the northern Kachin state. The images were pub-

Milestones: The Story of WordPress

4

http://milestones.pressbooks.com/files/2015/11/fbr-usability1.jpg
http://milestones.pressbooks.com/files/2015/11/fbr-usability1.jpg
http://www.freeburmarangers.org
http://www.freeburmarangers.org/2013/01/01/photos-of-burma-air-force-jets-and-mi24-attack-helicopters-bombing-rocketing-and-strafing-the-kachin-in-kachin-state-northern-burma/

lished on the blog. The next day, the BBC picked up the images, broadcasting

them around the world. These images increased international pressure on the

Burmese military and played a significant role in the 2013 ceasefire.

Charting a Dream Journey

On the road, USA

For nearly five years, Maria Scarpello has been traveling the highways and

byways of America, sampling beer, in search of that perfect pint. She travels

in an RV she calls Stanley, a 1999 Class C Ford Jayco. Stanley isn’t just an

RV; it’s her home. “Home is where my wheels are,” Maria says. She parks the

RV wherever she can: campgrounds, street corners, parking lots, and friends’

driveways. Stanley has been adapted to her life on the road. The bed has been

removed from the back of the RV, replaced with a couch to give additional

space to work, relax, and hang out with her two dogs, Ernie and Buddha.

Her first blog, TrippingWithStanley.com, charted the first year-and-a-half of

her journey across America, which included zip lines in Las Vegas, golfing in

Phoenix, barren deserts in Arizona, and the rocky cliffs of the Oregon coast.

When Maria left home, she had planned to travel for only six months, but the

five years she has lived in her RV are a testament to how deeply she has fallen

in love with life on the road.

Milestones: The Story of WordPress

5

http://www.freeburmarangers.org/2013/01/01/photos-of-burma-air-force-jets-and-mi24-attack-helicopters-bombing-rocketing-and-strafing-the-kachin-in-kachin-state-northern-burma/
http://www.bbc.co.uk/news/world-asia-20886377
http://trippinwithstanley.com

Maria Scarpello at Golden Canyon in Death Valley National Park.

Her current website, The Roaming Pint is a travelog of all of the breweries

she’s visited in the United States. Beer lovers can vicariously visit America’s

breweries through her site and search the website to get information about

the hundreds of breweries she’s visited.

To support her trip, Maria had to find work that would accommodate her

fluid lifestyle. First, she planned to make money through her blog; plenty of

people fund their travels by blogging, so why not? But making money from a

blog is no easy task, and, after a year on the road, Maria decided that monetiz-

ing her blog would not be profitable enough to support her nomadic lifestyle.

For the past three years, Maria has worked as an Internal Community Man-

Milestones: The Story of WordPress

6

http://milestones.pressbooks.com/files/2015/11/maria-1.jpg
http://milestones.pressbooks.com/files/2015/11/maria-1.jpg
http://theroamingpint.com

ager at WooThemes, a WordPress company that’s now part of the Automat-

tic family. Armed with a mobile hotspot and her laptop, she has everything

she needs to make money on the road. Her office is in her RV and has been

completely renovated to make it feel like home: the walls are painted bright

green and are decorated with stickers, coasters, pictures, and other travel

souvenirs. The view from her office is always changing. “Next month, my

office will be overlooking the beautiful white-capped Rockies in one of my

favorite states, Colorado,” Maria says. “The following month we will be ven-

turing even further west, eventually making our way back to the coast. There

is no better office view for me than overlooking vast bodies of water, prefer-

ably with palm trees or mountain-side cliffs and sandy beaches begging me to

put my MacBook Air away and let the dogs play!”

Maria Scarpello hanging out with her dogs and Stanley. Photo by sethkhughes.com.

Running a Small Business

Fjærland, Norway

Eivind Ødegård arrives at his office and heads straight for his coffee machine.

Milestones: The Story of WordPress

7

http://milestones.pressbooks.com/files/2015/11/maria-2.jpg
http://milestones.pressbooks.com/files/2015/11/maria-2.jpg
http://sethkhughes.com

Coffee in hand, he sits at his computer to read email. He is surrounded by

books: they fill the shelves lining the walls of his room. They’re stacked all

over the floor. Much of his day is spent in front of the computer, handling

money and bills, dealing with correspondence, and processing orders. It

sounds like a job that could be done in any office, but his view is quite differ-

ent from the normal 9-to-5. From his window he can see the ferries bringing

tourists in and out of the tiny town of Fjærland. They come to Fjærland for

the glacier, the majestic scenery, and Norway’s booktown, where Eivind is the

manager.

Fjærland is a rural community with less than 300 inhabitants. It is ringed

by mountains and glaciers. Waterfalls run down the mountainsides along the

fjords where dolphins and seal hunt for fish. In the summer, it’s hot and

sunny and busy with tourists; in the winter, the weather turns cold and the

local inhabitants — cut off from the rest of the world — plan for the coming

summer.

Milestones: The Story of WordPress

8

http://bokbyen.no/

The booktown at Fjærland. Photo by Trond J. Hansen.

Milestones: The Story of WordPress

9

http://milestones.pressbooks.com/files/2015/11/booktown1.jpg
http://milestones.pressbooks.com/files/2015/11/booktown1.jpg

A booktown — “a small rural town or village in which second-hand and anti-

quarian bookshops are concentrated. Most booktowns have developed in vil-

lages of historic interest or of scenic beauty.” The first was in Hay-on-Wye

in Wales, but there are now booktowns all over the world. In Fjærland, the

booktown that Eivind manages was established in 1995 to solve a specific

problem: buildings in the town were derelict and falling into disrepair, and

rather than watch them fall into ruin, the townspeople filled the buildings

with books. Second-hand books fill stables, boathouses, a bank and a post

office, a grocery shop, and a ferry waiting room. Each shop has its special-

ity; one even doubles as the tourist information office. Some bookshops are

staffed, others operate by an honor system; customers leave money in an

honesty book whenever they take a title.

A customer browses the books. Photo by Trond J. Hansen.

Some of Eivind’s daily routine is spent managing and updating the book-

town’s website, which also acts as a window into this secluded community.

The site provides information about the booktown, while the blog has news

from Fjærland. There is also an online store that distributes publications

Milestones: The Story of WordPress

10

http://booktown.net/
http://milestones.pressbooks.com/files/2015/11/booktown2.jpg
http://milestones.pressbooks.com/files/2015/11/booktown2.jpg
http://bokbyen.no/
http://bokbyen.no/

from Sjørettsfondet, the Norwegian Maritime Law Foundation. The website,

maintained in both Norwegian and English, is built on WordPress.

Building the Web

New York, New York

Some blogs have been around long before blog software even existed —

long before WordPress or Movable Type or LiveJournal. People shared their

thoughts and links from around the web on hand-coded websites which chart

not just the evolution of a person, but the evolution of the web.

Jeffrey Zeldman’s blog is one such example. It’s a record of many of the

important trends and changes in technology and design that have happened

since the mid-1990s, complemented by asides and personal reflections that

illustrate the world as it has changed with the web.

Before the advent of blogging as its own form, Jeffrey used his website to

entertain and create. His archives are a treasure trove of ’90s design artifacts:

banners from zeldman.com, desktop backgrounds, and 8-bit pixel art icons.

Reading through the blog archives is like touring the history of the modern

web through Jeffrey’s perspective. It chronicles the early days of web stan-

dards — when many designers built beautiful sites with Flash while others

crafted web pages with CSS — through the popularization of the semantic

web, the growth of social networks and the skepticism around them, to

responsive web design.

But there’s more to Jeffrey’s blog than musings about the web. While he was

still hand-coding his website, Jeffrey started a section called “My Glamorous

Life,” where he wrote about himself. The tag “glamorous” is still what he uses

to tag posts that are about him, rather than about someone else. As with all

diarists, there’s a lot we can learn about Jeffrey: he’s a web designer who

cares passionately about web standards. He’s a publisher and event orga-

nizer. He hosts a regular podcast called “The Big Web Show.” But there’s

more than just what he does. He has a daughter named Ava. He’s long been

Milestones: The Story of WordPress

11

http://www.sjorettsfondet.no/English.htm
http://www.zeldman.com
http://www.zeldman.com/zlink.html
http://www.zeldman.com/desktops/
http://www.zeldman.com/icon1.html
http://www.zeldman.com/glamorous/glamorous.html

divorced, but still looks after his ex’s two small dogs when she is ill (much to

the annoyance of his neighbors). He has family secrets that, now and again,

come out of the closet. He’s a fan of Edward Hopper and John Coltrane. He

surrounds himself with smart people he respects. He loves what he does and

he wants you to like it too.

This blend of personal and professional is the mark of many blogs. After all,

for the writer, these things are just different aspects of who they are. “I don’t

really see a big difference between sharing what’s personal and sharing opin-

ions about web design and sharing information about web design,” Jeffrey

says. “It’s all the same.” He continues in the same fashion today, blogging

on WordPress about the web, sharing news about his different projects, and

telling stories from his glamourous life.

Giving People a Voice

Worldwide

Citizen journalists all over the world tell their stories on the web. The past

15 years have seen publishing tools go from the hands of a few media outlets

into the hands of many. Those who traditionally formed the audience are now

able to report the news. Individuals share their stories and unique perspec-

tives from across the globe.

Global Voices Online is one of the largest international networks of bloggers

and citizen journalists. Using WordPress, the team of writers reports from

167 countries, and their stories are translated into more than 30 languages.

Founded in 2004 by Ethan Zuckerman and Rebecca MacKinnon to highlight

bloggers who build bridges between languages and cultures, its mission has

evolved to “find the most compelling and important stories coming from

marginalized and misrepresented communities,” as well as speak out against

online censorship and help people find new ways to gain internet access.

“People no longer only get their news from governments and the media, but

have a wider variety of sources to enjoy,” says Solana Larsen, the site’s for-

Milestones: The Story of WordPress

12

http://globalvoicesonline.org/author/solana-larsen/

mer managing editor. “Especially when it comes to societies that have limited

freedom of expression that’s hugely important. Ordinary citizens can help

change the way current events are perceived and remembered in history.”

Since its launch, bloggers on Global Voices Online have written about some

of the most significant events happening in the world. In March 2011, blog-

gers in Japan wrote with horror about the 8.9 magnitude earthquake that

killed 10,000 people and damaged the Fukushima power plant. The same

year, bloggers at Global Voices Online were among those in Tunisia who pro-

vided eyewitness accounts of the revolution that toppled the government. In

Egypt, bloggers wrote about the revolution that led to the downfall of Hosni

Mubarak. In 2014, bloggers from West Africa wrote about the Ebola crises

that swept Liberia, Guinea, and Sierra Leone. Bloggers write to remind the

world that they are more than just a virus, to highlight the work of scientists

and medics, and to share successes in the fight against the disease.

A resident walks past a mural about the dangers of the Ebola Virus painted on a wall oI Tubman Boulevard
in Monrovia. Photo by Morgana Wingard/ UNDP (cc-by-nc-nd).

But it’s not just the world-shaking events that get written about. Bloggers

Milestones: The Story of WordPress

13

http://globalvoicesonline.org/specialcoverage/2011-special-coverage/japan-earthquake-tsunami-2011/
http://globalvoicesonline.org/specialcoverage/2011-special-coverage/tunisia-uprising-201011/
http://globalvoicesonline.org/specialcoverage/2011-special-coverage/egypt-protests-2011/#timeline
http://globalvoicesonline.org/2014/10/24/west-africans-keep-calm-despite-ebola-and-remind-the-world-who-they-are/
http://globalvoicesonline.org/2014/10/24/west-africans-keep-calm-despite-ebola-and-remind-the-world-who-they-are/
http://globalvoicesonline.org/2014/08/23/the-heroic-everyday-work-of-lab-technicians-in-the-fight-against-ebola-in-liberia/
http://globalvoicesonline.org/2014/08/23/the-heroic-everyday-work-of-lab-technicians-in-the-fight-against-ebola-in-liberia/
http://globalvoicesonline.org/2014/08/27/nigeria-successfully-curtails-ebola-to-one-patient/
http://milestones.pressbooks.com/files/2015/11/gv-ebola1.jpg
http://milestones.pressbooks.com/files/2015/11/gv-ebola1.jpg
https://www.flickr.com/photos/unitednationsdevelopmentprogramme/15514434146/in/set-72157648119364049
https://creativecommons.org/licenses/by-nc-nd/2.0/

write about what it’s like to live in their countries, sometimes from repressive

regimes where voices are so easily silenced. In Russia, a blogger writes about

how the internet has become a battleground for LGBT rights. In Skopje,

Macedonia, shoppers protest against government plans to makeover build-

ings in a neoclassical or baroque style. Syria prepares for its first TEDx con-

ference. In Ecuador, the guayacan trees come into bloom, flooding the world

with the color yellow. Each of these stories is a window into another part of

the world, giving the reader a glimpse of what it is like to live somewhere else,

in a different set of circumstances.

These are just a few of the stories of those that use WordPress — people who

have been able to tell their stories and share their own unique perspectives

on the web. But the software itself has a story, one that stretches back even

before WordPress launched. Like so many pieces of free software, it didn’t

start out with financial backing, nor was it built by a company with clear aims

and objectives. It was originally a small discarded blogging script picked up

by two hackers who wanted to use it to power their blogs. So how did it come

to dominate the web? Why is it so popular? And who are the people who

made the software what it is today? This book charts the story of WordPress,

from its humble beginnings in an apartment above a bar in Corsica to the

dominant web platform that it is today.

Milestones: The Story of WordPress

14

http://globalvoicesonline.org/2015/01/31/grindr-in-the-kremlin-gay-and-online-in-putins-russia/
http://globalvoicesonline.org/2014/12/30/macedonians-hug-skopje-shopping-centre-to-protect-it-from-baroque-isation/
http://globalvoicesonline.org/2014/12/30/macedonians-hug-skopje-shopping-centre-to-protect-it-from-baroque-isation/
http://globalvoicesonline.org/2015/01/14/is-syria-ready-for-tedx-damascus-with-its-free-thinkers-dead-in-jail-or-exile/
http://globalvoicesonline.org/2015/01/14/is-syria-ready-for-tedx-damascus-with-its-free-thinkers-dead-in-jail-or-exile/
http://globalvoicesonline.org/2015/02/01/a-marvelous-display-of-yellow-in-ecuador/
http://globalvoicesonline.org/2015/02/01/a-marvelous-display-of-yellow-in-ecuador/

Part One

They found each other

To build a community

And called it WordPress

CHAPTER 1

Hello World

It was February, 2002 and Matt Mullenweg (matt) was in Houston, Texas,

home from school. Sitting at his homemade PC, surrounded by posters of his

favorite jazz musicians, he downloaded a copy of Movable Type, installed it

on a web server, and published his first blog post.

A few months later, and nearly five thousand miles away in Stockport, Eng-

land, Mike Little (mikelittle) sat in the converted cellar that served as his

home office. Surrounded by hundreds of books and CDs, he sat at a desk

swamped by a 17″ CRT monitor and spent his Sunday installing a free and

open source blogging platform called b2. His first post is similar to Matt’s.

Mike tells the world about his blogging platform and his plans for his blog:

“There will either be nothing here,” he wrote, “or a collection of random

thoughts and links. Nothing too exciting. But then again I’m not an exciting

person.”

These two unremarkable blog posts, testing new system and welcome, are

like hundreds of first blog posts before them — a tentative first step, a soft-

ware test, a pronouncement “I am here” with a promise of writing to come.

What sets these two posts apart, is that they don’t just mark the beginning of

two blogs, but a blogging platform that supports a community and an econ-

I suppose it was just a matter of time before my egotist tendencies com-

bined with my inherit (sic) geekiness to create some sort of blog. I’ve had

an unhealthy amount of fun setting this up. This will be a nexus where I

talk about and comment on things that interest me, like music, technol-

ogy, politics, etc. etc.

“

16

http://profiles.wordpress.org/matt
http://ma.tt/2002/02/testing-new-system/
http://profiles.wordpress.org/mikelittle
http://zed1.com/journalized/archives/2002/04/21/welcome/

omy, that enables millions worldwide to write their “hello world” posts, too,

and publish online.

Matt and Mike published their first posts at a time when more and more peo-

ple were getting online and using the internet to express themselves. Blog-

ging, while not quite in its infancy, was still maturing. A few years earlier, in

1998, there had only been a handful of weblogs. These early blogs were often

curated collections of links accompanied by snarky or sarcastic commentary.

These collections were web filters; the author surfed the web for readers who

could then browse through links on weblogs they trusted. One of the earli-

est bloggers, Justin Hall, collected links to some of the darkest corners of the

internet, but in addition to sharing the weird things he found, Hall poured

his personal life online, and was a key figure in the transition from link log to

personal diary.

As Rebecca Blood noted in 2000, blogs evolved from “a list of links with

commentary and personal asides to a website…updated frequently, with new

material posted at the top of the page.” It was this type of blog that brought

Mike and Matt online, a format with established conventions that we’re

familiar with today. Blogging software publishes content with the most recent

post at the top of the page — the first thing a visitor sees after landing on a

site. This self-publishing premise has been a blogging feature from the earli-

est online diaries, to weblogs, to tumblogs, and even microblogging sites such

as Twitter.

Many of the first bloggers were those already involved with the web: software

developers like Dave Winer, designers like Jeffrey Zeldman, and technolo-

gists like Anil Dash. As a result, much of the earliest blog content was about

the web and technology, interspersed with more diffuse thoughts and com-

mentary about a blogger’s life. With this tendency toward meta-commentary,

bloggers wrote about the tools used to publish their blogs and the improve-

ments they made to their sites. While blogging grew steadily, the community

was still considered geeky and insular. Journalists disparaged bloggers, and

rarely took their reporting seriously.

Milestones: The Story of WordPress

17

http://www.links.net/
http://www.links.net/www/index.html
http://www.rebeccablood.net/essays/weblog_history.html
http://scripting.com/1997/11/24.html
http://dashes.com/anil/1999/08/pulldown-menus.html
http://dashes.com/anil/1999/08/pulldown-menus.html
http://www.nytimes.com/2002/05/05/books/the-close-reader-at-large-in-the-blogosphere.html

In 2001, blogging started to permeate the public consciousness. American

political blogs became popular in the wake of the September 11th attacks on

the World Trade Center and the Pentagon. Blogs such as Instapundit and The

Daily Dish saw a massive surge in popularity. Andrew Sullivan, the blogger

behind The Daily Dish, said that people didn’t come to his blog just for news;

“They were hungry for communication, for checking their gut against some-

one they had come to know, for emotional support and psychological bond-

ing.”

This was one of the first indications of the power of blogging — it gave people

a voice online, providing a platform where people could come together to

grieve. In his book Say Everything: How Blogging Began, What It’s Becom-

ing, and Why it Matters, Scott Rosenburg talks of how, despite the dot-

com bubble burst, blogging increased in the last quarter of 2001. “Something

strange and novel had landed on the doorstep,” Rosenburg writes in his intro-

duction, “the latest monster baby from the Net. Newspapers and radio and

cable news began to take note and tell people about it. That in turn sent

more visitors to the bloggers’ sites, and inspired a whole new wave of blog-

gers to begin posting.” Since that time, blogging — and later social media —

has played a pivotal role in politics, public life, and even revolutions.

As blogging evolved, so did blogging tools. Services like Geocities and Tripod

allowed anyone to create a website, but these sites had little in common with

the dynamic stream of content on a blog. The earliest blogs were manual,

using HTML and FTP. On his blog, Justin Hall had a page titled Publish Yo’

Self, which taught people how to write HTML and publish online, claiming

that “HTML is easy as hell!” But writing and publishing HTML got in the

way of the actual writing process; the dream was to create a tool for writ-

ing content and publishing it to the web with one click. Dave Winer, whose

popular Scripting News was one of the earliest blogs, set up UserLand Soft-

ware, which developed Frontier NewsPage, a tool that enabled people to cre-

ate news-oriented websites like Scripting News.

In 1998, Open Diary, a community where people wrote diaries online and

Milestones: The Story of WordPress

18

http://pjmedia.com/instapundit/
http://dish.andrewsullivan.com/
http://dish.andrewsullivan.com/
http://archive.pressthink.org/2005/01/21/berk_essy.html
http://www.links.net/webpub/
http://www.links.net/webpub/
http://scripting.com/
http://scripting.com/frontier/netScripting/newsPage.html

communicated with other diarists, launched. Then came LiveJournal, Xanga,

and Pitas.com in 1999. In the same year, Pyra Labs launched Blogger, the

tool often credited with popularizing blogging. Blogger automated publishing

a blog to a web server: the user wrote their content, and Blogger uploaded the

page to the server after each post.

Movable Type, the platform which, at one time, was one of WordPress’

biggest competitors, launched in 2001. As with so many popular platforms,

Moveable Type came about as a result of developers scratching their own itch.

While Blogger was easy to use, it was limited in its functionality — it lacked

post titles, rich text editing, and categories. For reasons like these, Ben and

Mena Trott created something different for Mena’s blog. When they launched

Movable Type in October 2001, it quickly became the most popular blogging

platform, used by many of the major blogs at the time, including Instapundit,

Wonkette, and Boing Boing. In many ways, Movable Type raised the bar for

blogging platforms. It was not simply a publishing platform, but a publish-

ing platform that people wanted to use. “I thought it was beautiful. I think in

a lot of ways it foreshadowed the web 2.0, not the gradients and things, but

the beauty and the white space,” recalls Anil Dash. Now, “all of a sudden my

blog posts had titles and I could have comments and I could archive things by

month and I could do all manner of really interesting things. And all mostly

with just HTML. Pretty much as easily as Blogger, but with just so much more

power.”

The tools got better. Soon publishing content wasn’t enough. Communities

grew around different types of blogs. An author’s blog became a way for them

to connect with people around the world. A blogger’s first, lone “hello world”

quickly evolved into a series of posts that interlinked with other bloggers

across the internet. Sidebars were embellished with “blogrolls,” lists of blogs

that gave “link love” to favorite sites. Movable Type created Trackbacks to

allow bloggers to track discussion on their articles across the internet.

It was into this arena that the nascent WordPress platform first said “hello

world.” It did so quietly, not in Texas, nor in Stockport, but in the French

Milestones: The Story of WordPress

19

http://www.livejournal.com/
http://www.pitas.com/
http://evhead.com/1999/08/we-just-launched-cool-new-tool-at-pyra.asp
http://www.dollarshort.org/
http://archive.wordpress.org/interviews/2013_06_28_Dash.html#L7

island of Corsica. It appeared, first of all, not even as WordPress at all. In

June 2001, months before Mike or Matt had even published their first blog

posts, a developer in Corsica created his own blogging platform. He touted it

as a “PHP+MySQL alternative to Blogger and Greymatter.” He called his PHP

blogging platform b2.

Milestones: The Story of WordPress

20

http://zengun.org/weblog/archives/2001/06/post1958/

CHAPTER 2

The Only Blogger in Corsica

It was late 2000, and Michel Valdrighi (michelv) was writing a blog post in

his small apartment above a bar in Corsica. The “only blogger in Corsica”

used a creaking dial-up AOL connection that disconnected every thirty min-

utes. He shared his apartment with two cats, No Name and Gribouille, who

perched on a windowsill overlooking a high drop.

Like many bloggers, Michel experimented with different web publishing plat-

forms, and started out with HTML before moving to Blogger. But he dis-

covered that Blogger wasn’t as fully-featured as he’d wanted. For example,

it didn’t have a built-in comment system. This was at a time when bloggers

could sign up for external commenting services that were often unreliable

and unstable. Michel signed up for two different commenting services — both

of which disappeared, along with all of the comments and discussions. Blog-

ger was also plagued by stability issues, and users sometimes joked that the

platform was “sometimes up.”

Michel was learning the server-side scripting language PHP. Unlike a lan-

guage like Perl, PHP is relatively easy to learn, making it a useful tool for peo-

ple who want to start hacking on software. One of Michel’s first PHP projects

was a Corsican-language dictionary: this experience taught him that he could

use PHP to manipulate data, inspiring him to create his own blogging script.

21

https://profiles.wordpress.org/michelv
http://zengun.org/weblog/archives/2000/12/post1447/

In June 2001, Michel started developing b2, 1 a “PHP+MySQL alternative to

Blogger and Greymatter.” He wrote:

The PHP and MySQL combination was a good alternative to other contem-

porary blogging platforms. PHP is suited to the dynamic nature of a blog, in

which an author regularly posts content and readers regularly return to read

it. Movable Type used Perl, which rebuilt the page every time someone left

a comment or edited the page, often making for slow page-load times. As a

result, b2 was touted as an easy-to-use, speedy blogging tool. “You type some-

thing and hit ‘blog this’ and in the next second it’s on your page(s),” boasts the

sidebar of cafelog.com. “Pages are generated dynamically from the MySQL

database, so no clumsy ‘rebuilding’ is involved. It also means faster search/

display capabilities, and the ability to serve your news in different ‘templates’

without any hassle.”

These features attracted Matt, Mike, and many other bloggers. But Michel

admits to being a novice developer, learning PHP and MySQL while building

the precursor to one of the most widely-used blogging and CMS platforms in

Not much new ideas in it, but it will feature stuff like a built-in comment

system, good users management (with complete profile etc), user-

avatars (got piccies ?), multiple ways of archiving your blog (even post

by post if you like to do a kind of journal) (sic).

The installation will be easy, just edit a config file, upload everything and

launch the install script. And there you go, but you’d like an admin con-

trol panel? It will be there, packed with options.

““

1. The name b2 is a combination of the word “blog” and “Song 2” by the British band Blur, which

Michel had been listening to regularly at that time. He combined them to make “blog2,” then “blog-

ger2,” until he arrived at b2. b2 was also known as Cafelog, which was the name Michel had planned

to give to the 1.0 series as no b2 domains were available, and the name was too short for a project on

SourceForge.

Milestones: The Story of WordPress

22

http://zengun.org/weblog/archives/2001/06/post1958/
http://cafelog.com/
http://cafelog.com/

use today. He recalls that as a fledgling PHP developer, he didn’t always do

things correctly:

Like other early blog software developers, Michel was “scratching his own

itch” — a familiar phrase in free software development. This means creating

the tools you need, whether that’s a blogging platform, a text editor, or an

operating system. In his book, The Cathedral and the Bazaar, Eric Raymond

writes, “every good work of software starts by scratching a developer’s per-

sonal itch.” If a developer has a problem, she can write software to solve that

problem, and then distribute it so that others can use it too. Many blogging

platforms, including Blogger, b2, Moveable Type, and WordPress, started life

in this way.

By being both the software developer and its user, the developer knows

whether the tools she creates meet her real needs. When developers write

code, they use it just as any user would. They know what works and what

doesn’t. Scratching an itch gives the developer a closer relationship with the

software’s users — it’s grass-roots development that’s bottom-up as opposed

to top-down.

Michel wanted a blogging tool, not a CMS, so early b2 features were focused

on creating a frictionless way to blog. Early enhancements made writing

easier. For example, AutoBR was included to add a
 tag to create a

new line every time a writer hit enter. As Michel’s, and later the commu-

nity’s needs changed, improvements included a basic templating system, an

options page, archives, an option to allow users to set their own timezone,

and comments.

Michel believed that any layperson should be able to easily publish on their

When you look at WordPress’ code and think ‘Wow, that’s weird, why

did they do that this way?’, well often that’s because they kept doing

things the way they were done in b2, and I sucked at PHP.
“

Milestones: The Story of WordPress

23

http://wordpress.tv/2012/02/27/les-origines-de-wordpress-la-naissance-de-b2cafelog/
http://www.catb.org/esr/writings/homesteading/cathedral-bazaar/ar01s02.html
http://cafelog.com/index.php?p=19&c=1
http://cafelog.com/index.php?p=24&c=1

blog with b2. This “making software easy for everyone” ideal permeated the

b2 community and would eventually become a core ideal in WordPress’ own

philosophy.

By the end of June 2001, Michel was ready to say goodbye to Blogger and

move his blog to b2. His blog was the first website to run on the code that

would become WordPress, grandfather to millions of websites and blogs. A

few days later, Michel set up a website called cafelog.com, and released the

first version of b2. The software was quickly picked up. The second site run-

ning b2, the personal weblog of a schoolboy named Russell, was published in

July 2001.

The b2 user interface.

Development didn’t always go smoothly, although solving problems

inevitably led to platform refinements. Brigitte Eaton, who ran a site called

Eatonweb, was the first prominent b2 user. Eatonweb was a hand-

maintained list of blogs, a go-to place for discovering new blogs until the

number of blogs exploded and hand-maintained lists became untenable. It

Milestones: The Story of WordPress

24

http://zengun.org/weblog/archives/2001/06/post1909/
http://cafelog.com/index.php?p=60&c=1
http://cafelog.com/index.php?p=60&c=1
http://zengun.org/weblog/archives/2001/07/post270/
http://zengun.org/weblog/archives/2001/07/post270/
http://web.archive.org/web/20020718211541/http://russell.bustakartoon.com/
http://milestones.pressbooks.com/files/2015/11/b2admin.png
http://milestones.pressbooks.com/files/2015/11/b2admin.png
http://portal.eatonweb.com/

was superseded by the ubiquitous blogroll and services like Technorati,

which started ranking blogs according to incoming links. Brigitte Eaton pub-

lished regularly, and when she imported her blog into b2 she found that the

more posts she added, the slower the blog loaded. This was because Michel

didn’t know how to write code for retrieving months of content from the

archives. His code parsed every post on the blog to query whether the post

had changed and then displayed it. For blogs with many posts, this meant a

huge server workload, which quickly slowed the website. Solving this prob-

lem meant improvements for all b2 users.

Although b2 did not have an established developer infrastructure, it was open

for contributions. The first major code contribution to the project was ping-

back functionality, from developer Axis Thoreau, who went by the handle

Mort. 2 Movable Type had a similar linkback feature called trackback; Michel

added a version of it to b2. Trackback is a ping sent from the original author’s

site to a site they reference with a link. Unlike pingbacks, trackbacks are man-

ual so the original author has to choose to send the trackback, and can edit

the excerpt sent. Trackbacks are much more susceptible to spam than ping-

backs; 3 whereas pingbacks ping back to the original site to verify that it is not

spam, trackbacks do not carry out the same checks.

With users and developers frequenting b2’s forums, a community quickly

formed. The forums were a haven for people who needed help with the soft-

ware. The most popular were the installation, templating, and how-to discus-

sion forums, but there were also forums just for general chatter about the

software and about blogging. Developers helped each other out with hacks for

b2, and it was on the forums that the early WordPress developers first met.

2. Pingback is a linkback method which authors use to request notifications when someone links to

their website. An author writes a post on their blog that links to a post elsewhere. The original site

sends an XML-RPC request and when the mentioned site receives the notification signal, it goes back

to the original site to check for the link. If it exists, then the pingback is recorded. A blogging system

can then automatically publish a list of links in the comment section of the post, or wherever the

developer chooses to place it.

3. Spam pings are pings sent from spam blogs to get links on other websites.

Milestones: The Story of WordPress

25

http://cafelog.com/index.php?p=490&c=1
http://cafelog.com/index.php?p=490&c=1
http://web.archive.org/web/20020921055340/http://mort.mine.nu:8080/b2/
http://zengun.org/weblog/archives/2002/08/trackback-in-b2/
http://zengun.org/weblog/archives/2002/08/trackback-in-b2/

Outside the b2 community, the software was criticized. Michel’s lack of cod-

ing experience showed, especially to experienced developers. Blogger Jim

Reverend wrote a post titled, “Cafelog: A Look at Bad Code.” In it, Jim

bemoans poor code quality in publicly released software — particularly b2 —

and criticizes the software for its lack of features 4 and poor coding practices.

Michel’s lack of PHP experience meant that he wrote inefficient code and

used techniques counter-intuitive to a more experienced coder. Rather than

taking a modular approach to solve a logic problem, the code grew organi-

cally, written as Michel thought about it — a sort of stream-of-consciousness

approach to coding. Code wasn’t so much a tool to solve a problem, but a

tool to get the newest feature on the screen. This created multiple code inter-

dependencies, which caused problems for developers new to the project. A

line of code would change and break something that appeared unrelated. For

Reverend, this type of “dirty code” was unforgivable. “What I do have a prob-

lem with,” he wrote, “is my inability to use his code (without extensive read-

ing and rewriting) to implement my own features.” Writing extensible code

is a fundamental principle of free software. If code is written in a stream-

of-consciousness fashion outside best practices, it becomes difficult for other

developers to extend.

It wasn’t all bad. In a follow-up article, Reverend concedes that there are ben-

efits to poorly written code:

While programmers like myself start convulsing when we have to wade

through such code, less experienced programmers actually like it,

because it is easier for them to work with. Because the “template func-

tions” are in the global namespace, they work anywhere. Because the

data returned by the database is in a global variable, you don’t have to

“

4. Particular problems that the article calls out include the fact that b2 didn't cache calls to the data-

base. So when there was a new visit from a user, the page had to be loaded from the database and

server, slowing the website. The article also criticized the lack of flexibility in the templating system

and the absence of cruft-free URLs (known in WordPress lingo now as "pretty permalinks").

Milestones: The Story of WordPress

26

https://web.archive.org/web/20030910221739/http://revjim.net/item/3955/
https://web.archive.org/web/20040121234436/http://revjim.net/item/3962/

Michel’s inexperience gave the code a level of simplicity that made it easy for

other novice developers to understand. “In a way it was beautiful because it

was so simple,” says developer Alex King, (alexkingorg). “It wasn’t elegant

but it was straightforward and accessible. For someone who didn’t have a lot

of development experience coming in — like me — it was very comfortable

understanding what was going on.”

The article also highlights something important: people liked using b2. With

b2 they could publish without hassle. “If you are a user of this product,”

writes Reverend, “please don’t tell me about how cool it is, or about how well

it works. If you read a site powered by this engine, please don’t tell me about

how easy you find it to use.”

But people did find it easy to use. To users, it didn’t matter what was going

on under the hood. It may have had its problems, but it was a friction-free

way to get content online. Where users went, developers followed; even bet-

ter if those users were novice developers themselves, fumbling at the edges of

PHP, learning what they could do with code, which new features they could

add to their website and share with other users. Even in these very early days,

a schism started to open between developer-focused development and user-

focused development. On the one hand, there was a focus on logical, beauti-

fully written code, and on the other, a focus on features users wanted.

Despite having distributed b2, Michel hesistated over his choice of license.

The free software movement was relatively young, and many large projects

had their own licensing terms (such as Apache, PHP, and X.Org). Until he

chose a license, Michel distributed b2 with his copyright.

On the b2 blog, you can follow the events leading to b2’s distribution with a

GPL license. In August 2001, Michel made a brief statement on cafelog.com,

use any tricks to get at it. It makes extending, enhancing, and modifying

the code easier for newbies.

Milestones: The Story of WordPress

27

http://archive.wordpress.org/interviews/2013_04_23_King.html#L53
http://profiles.wordpress.org/alexkingorg/

telling people that they could use his code provided he was given credit for it,

stating explicitly that “b2 isn’t released under the GPL yet.” People were tak-

ing notice of b2 and some passed it off as their own. In October 2001, a Nor-

wegian agency claimed to own the copyright to b2 and Michel was forced to

contact the Norwegian copyright agency. In the discussion around this inci-

dent, Michel made a statement that came as close to a license as he’d had so

far:

Michel released b2 under this slapdash license until he realized that b2

needed an official license and started looking in earnest. It was important to

Michel that b2 remain free, even if he stopped working on the project. He also

wanted his code to remain free if other developers took it and used it in their

own project. He recalls now that “at the end of that elimination process, GPL

remained. It helped that there were already some projects using it, as I didn’t

want the code to end up abandoned and forgotten because of the choice of an

exotic license.”

Michel’s choice of license was prescient. Under a GPL license, software can

You can use b2 for free, even if your site is of commercial nature. You’re

welcomed to buy me items from my Amazon.com wishlist if you’re going

to make much money from your b2-powered site or if you just like b2.

You can edit b2’s source code.

You can re-distribute a modified or original version of b2. In no way your

modifications make you author or co-author of the modified version, I’ll

remain b2’s sole author and copyright holder. (sic)

Any help is welcomed. Feel free to submit fixes and enhancements, they

might get in b2’s code and your name or email address will be there as

credit in the source code.

I guess this makes a b2 license for now.

“““““

Milestones: The Story of WordPress

28

be forked, modified, and redistributed. If development stops (as it did with

b2), the ability to fork, modify, and redistribute can prevent software from

becoming vaporware.

All was going well until May, 2002 when Michel lost his job. In the months

following, he continued to develop b2, but he wrestled with depression and

health issues. His electricity was cut off, he moved, and struggled to find a

job. With so much going on in his life, Michel eventually disappeared. He

posted about spam in December, 2002 but didn’t post on his personal blog in

2003.

The users of b2 had no lead developer. There was no one to steer the project,

fix bugs, apply patches, or add new features. People were concerned about

Michel — they liked him and were worried about what had happened to him.

In March 2003, a thread on cafelog.com discussed Michel’s whereabouts.

Michel’s sister, Senia, posted that he was well and that he was looking for a

job, and promised to ask him to connect to IRC and MSN. The responses to

Senia were mixed.

One commenter said:

Others had concerns about their own projects:

Please pass on to Michel that not only has he created a really nice piece of

software, but he has also inadvertently built a community […] of people,

a sort of commonwealth on the blogosphere. I don’t know him the slight-

est bit, but I wish him well and hope that any soul searching or vision

quest (or vision exodus?!) he has embarked on helps him find what he

needs. Yet also allows him to tie up any loose ends that he leaves behind.

“

Anyone heard from Michel yet? His last post was 6 weeks ago. I want to

install and promote b2 in two projects (one affiliated with a UN women’s“

Milestones: The Story of WordPress

29

http://zengun.org/weblog/archives/2002/05/jobless/
http://zengun.org/weblog/archives/2002/08/back/
http://zengun.org/weblog/archives/2002/08/back/
http://zengun.org/weblog/archives/2002/08/they-cut-my-arms/
http://zengun.org/weblog/archives/2002/08/its-that-time-of-the-year-again/
http://zengun.org/weblog/archives/2002/10/untidy/
http://zengun.org/weblog/archives/2002/10/untidy/
http://zengun.org/weblog/archives/2002/12/spam-the-blogosphere/
http://cafelog.com/index.php?p=499&c=1

Michel never went back to b2 with the same gusto with which he had started.

Eventually, the stagnation made the software unusable. Software needs to be

maintained — bugs need to be fixed, security issues patched, new features

need to be added. Blogging software needs to evolve with a fast-moving inter-

net. It wasn’t just the software that was on the verge of becoming vaporware

— the community was adrift too. In the free software world, the community is

as important as the software. The community is the garden in which the soft-

ware grows and matures. Community members submit patches, fix issues,

support users, and write documentation to help a free software project flour-

ish. But every project needs a person, or group of people, to commit patches,

create new features, and steer the project. When the lead developer disap-

pears without a trace, community members can play around the edges, help

out with support and hacks, but, without someone to step up and take the

lead’s place, the community dissolves. People move on to other projects, or

start their own. After all, if the person who owns the project shows no com-

mitment, how can commitment be expected from anyone else?

But the GPL license meant that neither the code nor the community had to

disappear. Developers — familiar names from the b2 community forums —

forked the software. While b2 itself did not continue, it was the platform that

connected Mike and Matt, and the software that would provide the founda-

tion for WordPress. With its simple PHP and focus on usability and ease of

use, b2 contained the rudimentary ideals that would form the heart of Word-

Press. But first, the software had to be forked, and, as bloggers are wont to

do, they took to their blogs to do it.

project).. but I am nervous about doing so if there will be no developer

support available. I am sure he knows that b2 is including (sic) in the

Fantastico auto-installer bundled with the cPanel virtual hosting tool. I

want to write an blogging article for hosting clients. Michel? You going

to be around?

Milestones: The Story of WordPress

30

CHAPTER 3

The Blogging Software
Dilemma

The internet brings people from different backgrounds, countries, and cul-

tures together around shared interests. On a small corner of the internet, b2

was forming one such community. People supported one another because

they were interested in two things: blogging and blogging software.

The founders of WordPress were among those drawn into the b2 community.

They were from very different backgrounds, but free software formed their

common ground. In Houston, Matt Mullenweg wrote about politics, econom-

ics, technology, and his passions for jazz music and photography. Mike Little,

from Stockport, wrote about blogging technology, the books he read, and his

family.

Matt and Mike had very different entries into computing: Matt’s father was

a computer programmer, and Matt started tinkering with computers at an

early age. Mike, who was 22 years older than Matt, had his first computer

experiences at school cut short when a teacher caught him and his friends

smoking in the paper room.

A shared passion for music drew them both deeper into programming. Mike

was involved in the Manchester music scene in the 1980s, working at a record

shop and handing out ‘zines for nightclub manager and record label owner

Tony Wilson. He lived with a local glam rock band, and it was through the

band that computing came back into his life. The lead singer thought it would

be cool to have stacks of televisions with graphics on either side of the stage.

Mike borrowed a ZX Spectrum and used a couple of programs from com-

31

puting magazines: one of them bounced objects around the screen, the sec-

ond created 3D text. He hacked on them until the words he wanted bounced

around a screen, but the plan fell flat when they couldn’t figure out how to

output the program to multiple screens at the same time. Despite not being a

total success, this incident further cemented his reputation for being the go-

to guy for all things computing and music.

By the time he arrived at b2, Mike had nearly twenty years of programming

experience. That first faltering step with the ZX Spectrum had started a love

affair with coding, which took him on a route through Basic, 6502 Assembler,

Pascal, and C. He learned PHP during the transition between PHP versions

one and two.

In Houston, Matt set up his first business while studying at the High School

for the Performing and Visual Arts (HSPVA). While Mike’s music passion was

post-punk, for Matt it was jazz. He built computers and websites for his music

teachers, including his saxophone teacher, David Caceres. He also used the

internet to connect other music fans in the Houston area, setting up a forum

on David Caceres’ website. Matt used the forum software phpBB — his first

taste of using PHP — to create a dynamic website.

With experience in PHP, b2 was the perfect platform for Matt and Mike to

publish their content and to let their hacker tendencies loose. Matt exper-

imented with other platforms, including Movable Type, but at the time, it

didn’t have pingbacks and comments were in pop-ups, as opposed to being

inline. Movable Type was written in Perl with a DBD database, which meant

that customizing Movable Type was more difficult than a PHP platform.

PHP and MySQL allowed Mike and Matt to scratch their blogging and hack-

ing itches. They hacked on their websites and customized as they saw fit, and

shared those hacks and improvements with the community. Their first dis-

cussion was around the gallery software Matt used on his blog. Other devel-

opers had their own itches to scratch: developers were talking about building

their own platforms; others, in the absence of Michel, were considering a

fork.

Milestones: The Story of WordPress

32

http://web.archive.org/web/20020329153221/http://davidcaceres.com/
http://web.archive.org/web/20020202222327/http://davidcaceres.com/forum/
http://web.archive.org/web/20020202222327/http://davidcaceres.com/forum/

As free software licensed under the GPL, it meant anyone could fork b2 and

use it, provided their fork retained the GPL license. By early 2003, it was clear

that Michel would not be back. No one was maintaining b2 or fixing security

issues. The blogging software at the core of the growing community was no

longer evolving. The web, and blogging, was moving forward, but b2 had lost

its driving force. In France, François Planque forked b2 to create b2evolution.

The lack of b2 development frustrated François and he wanted to continue to

develop b2 for his own needs.

In Cork, on the west coast of Ireland, Donncha Ó Caoimh, (donncha), forked

b2 to create b2++, a multi-user blog platform. Donncha discovered b2 while

searching for a platform to create a blog network for his Linux user group. He

found b2 small, basic, and easy to modify. However, he made major modifi-

cations to create blogs.linux.ie. The templating system for b2++ used Smarty,

which separated code and presentation, making it easier for users on the net-

work to change their site’s design. Donncha didn’t consider b2++ a fork of

b2. “A fork gives the impression that it was competing — it wasn’t competing

because most of what it did was add multi-user aspects to the project.” While

b2 was a platform aimed at individual bloggers, everything that Donncha did

in b2++ created a better multi-user environment.

On his blog, Matt wrote a post called “The Blogging Software Dilemma,” in

which he proposes forking b2. He wrote:

b2/cafelog is GPL, which means that I could use the existing codebase

to create a fork, integrating all the cool stuff that Michel would be work-

ing on right now if only he was around. The work would never be lost, as

if I fell of the face of the planet a year from now, whatever code I made

would be free to the world, and if someone else wanted to pick it up they

could. I’ve decided that this (sic) the course of action I’d like to go in, now

all I need is a name. What should it do? Well, it would be nice to have the

flexibility of Movable Type, the parsing of Textpattern, the hackability of

b2, and the ease of setup of Blogger. Someday, right?

“

Milestones: The Story of WordPress

33

http://fplanque.net/Blog/devblog/2003/05/10/b2_evolution_new_features_summary
http://profiles.wordpress.org/donncha/
http://web.archive.org/web/20030302025915/http://blogs.linux.ie/
http://www.smarty.net/
http://archive.wordpress.org/interviews/2013_05_03_OCaoimh.html#L54
http://archive.wordpress.org/interviews/2013_05_03_OCaoimh.html#L54
http://ma.tt/2003/01/the-blogging-software-dilemma/

The next day, from Stockport, Mike Little responded:

Today, the post that started WordPress gets a lot of traffic when people link

to it on the software’s anniversary. But for more than a year, that post sat

there with just one comment, a marker of the very early days of the project,

when for a few months, just Matt and Mike, in their homes at opposite sides

of the Atlantic, started creating WordPress. At the beginning, it was just two

developers working on a small script to make their blogs better. By forking

b2, they could continue to use the software, develop it for their own needs,

and scratch their own itches. At that moment, in a small pocket of the inter-

net, the right people connected. They may have been from completely differ-

ent backgrounds, but a shared love of creating tools, playing with code, and

publishing online brought them together.

On April 1, 2003, Matt created a new branch of b2 on SourceForge, and, with

the name coined by his friend Christine Tremoulet, called it WordPress.

If you’re serious about forking b2 I would be interested in contributing.

I’m sure there are one or two others in the community who would be too.

Perhaps a post to the b2 forum, suggesting a fork would be a good start-

ing point.

“

Milestones: The Story of WordPress

34

http://cafelog.cvs.sourceforge.net/viewvc/cafelog/

Part Two

Principles designed

On true usability

For every person

CHAPTER 4

Guiding Principles

It’s no surprise that WordPress’ founding developers had so much in com-

mon. Matt and Mike liked b2 because it was simple, hackable, and usable,

and WordPress needed to be those three things too. When they forked b2,

Matt and Mike didn’t just inherit code, they also inherited b2’s ideals — ideals

enriched by fundamental beliefs about software that each founder embraced.

These founding philosophies informed much of WordPress’ early develop-

ment, became underpinning philosophies for the project, and still inform

decision making about software development and community building today.

In WordPress’ nascent state as b2, the focus was on making things as easy

as possible for all users, and particularly for those new to the platform. On

cafelog.com, Michel kept a development log where he recorded his thoughts

about developing b2. It was often just a list of things that he’d done that day,

but some of the things he mentions provided insight into who he saw as b2’s

user base. For example, when he talked about creating a templating system,

he said that he wanted to “make templates customizable by Joe Newbie,” in

other words, a templating system that any user could customize, regardless

of background.

One key feature of b2 was the install script, written by a b2 contributor, which

made installing the software easy. This contrasted with the most popular

blog platform at the time — Movable Type — which was considered difficult

to install. A simple install script meant that people without much technical

knowledge could install WordPress. By the time b2 ceased development, it

hadn’t reached the point of a seamless install, but the code and the intent pro-

vided the groundwork for WordPress’ “famous 5-minute install.”

Allied to this focus on usability was a commitment to simplicity. Creating

36

http://cafelog.com/?p=30&tb=1

simple software means providing users with only exactly what they need to

get the job done. Software is a tool, and like any tool, the simpler it is, the

easier it is to use. By keeping things simple, a user can figure out the soft-

ware from the interface itself, with as little external instruction as possible.

The way to use software should be self-evident from the interface.

When Michel started b2 development, he made the decision to focus on blog-

ging functionality. He didn’t want to create a CMS, he wanted to create a

blogging platform. This meant that all of his early enhancements focused on

simple tools for getting content on the screen. This focus on blogging ensured

that, particularly in the early days of development, the platform remained

simple.

Matt’s early focus was on web standards. He wanted to ensure his own web-

site’s forward compatibility — that it would work in future browsers and

devices. Jeffrey Zeldman’s Forward Compatibility: Designing and Build-

ing with Standards was a major influence on Matt. Zeldman’s book advo-

cates creating standards-compliant websites that work across browsers and

devices. Even prior to forking b2, Matt had converted most of his site to

XHTML 1.1.

This meant that many of Matt’s first WordPress commits focused on HTML

semantics and web standards. After setting up the CVS repository (the ver-

sion control system the project used at that time) and uploading the files,

Matt made basic semantic changes to the index.php file, fixed whitespace

issues, and converted <div> tags into heading tags. Using correct tags to

generate proper headings reinforces the content’s semantic meaning on the

page.

In a post just after WordPress 0.7 launched, Matt outlined his thoughts on

the future of WordPress on WordPress.org. He wrote, “one thing that will

never change is our commitment to web standards and an unmatched user

experience.”

Simplicity, usability, and web standards — these are principles that guide

Milestones: The Story of WordPress

37

http://wordpress.org
http://web.archive.org/web/20031002112415/http://wordpress.org/about/future/

WordPress development to the present day. Over time and as new people

join the project, new axioms become a part of the community, augmenting

and strengthening these guiding principles. Taken together, these are guiding

principles for a user-first focus. Perhaps this came about because Mike and

Matt were users of b2 who blogged before they started developing blogging

software. They started developing blogging software only because they were

interested in making improvements to their own blogs, and as they made

improvements, they were drawn further into the development community.

But they remained, particularly in the beginning, software users, which

meant that while they were developing software, they retained an empathy

for others. This was also true for other developers who became involved with

the project. Developers didn’t get involved with the project just because they

felt like working on blogging software. They got involved with the project

because they used blogging software. They had installed the software for their

own blog, found that they wanted to change or improve something, and con-

tributed those changes to WordPress.

What ensures that the user-first approach continues is a decision made prior

to even the fork of WordPress, a legacy that the community is either sustained

by or stuck with, depending on your perspective. That legacy is the GPL, the

software license that Michel distributed b2 with, and it remains WordPress’

license to this day.

Milestones: The Story of WordPress

38

CHAPTER 5

The GPL

WordPress is distributed with the General Public License (GPL). It contains

the terms under which the software is distributed, and there are few things

more divisive in the project. Matt and Mike, the founding developers of

WordPress, supported the license. Before getting involved with b2, Mike had

contributed to free software projects. He’d submitted patches to the version

control system CVS and the DJGPP compiler, and bug reports to database

software MySQL. When it came to choosing his blogging software, the license

played a big part in his decision. Movable Type, for example, was not an

option because it wasn’t GPL. As a coder, Mike was accustomed to software-

sharing and to working on someone else’s code to make it your own. It was

while he was working on DJGPP that he first learned about GNU and the

ideas behind the GPL. “I learned about Richard Stallman and read his story,”

he says. “he instilled those four principles that just sort of inspired me.”

The principles that inspired Mike have inspired thousands of software devel-

opers. They are ideas that resonate with hackers, that speak to freedom, and

a society based on sharing and collaboration. Communities like WordPress

have grown up around an ethos that has influenced models of software devel-

opment all over the world.

The principles are the clauses written into the General Public License (GPL),

the terms under which the software is distributed. The license was written by

Richard Stallman for software he released as part of the GNU software pro-

ject. 1 Exasperated by proprietary licensing — which he believed responsible

1. In his book, Hackers: Heroes of the Computer Revolution, Stephen Levy explores the Lab at MIT

where Richard Stallman worked, and how the Lab's decline led Stallman to create GNU and write the

GPL.

39

http://www.gnu.org/licenses/gpl-2.0.html
http://archive.wordpress.org/interviews/2013_03_26_Little.html#L154

for the decline of the MIT hacker lab — he wanted to distribute his software

with a license that protected software users’ freedoms. The GPL protects four

user freedoms that are at the heart of “free software.” “Free” in this context

does not apply to price; it refers to freedom, which is the underlying ethos

that drives the Free Software Foundation.2

Free software protects four essential freedoms:

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and change it so it does

your computing as you wish.

• The freedom to redistribute copies so you can help your neighbor.

• The freedom to distribute copies of your modified versions to others.

These can be summarized as “users have the freedom to run, copy, distribute,

study, change, and improve the software.” The freedoms are protected for all

users. What this means in practice is that anyone can use a piece of free soft-

ware — they can install it in as many places as they want and give it to who-

ever they wish. They can hack on it and modify it for their own needs. They

can distribute any changes they make. When it comes to a piece of free soft-

ware, the user has absolute freedom.

However, it’s not enough just to write freedoms into a license. Those user

freedoms need to be protected. Otherwise, free software can be absorbed into

proprietary software and developers get the benefits of free software, but

don’t pass on those benefits to others. To ensure that these freedoms are pro-

tected, the GPL operates using what Stallman calls “copyleft.” Copyleft sub-

verts the normal use of copyright laws to protect the terms under which the

work can be distributed and redistributed. It’s a method of making a work

free and requiring that all extended and modified versions of the work are

free as well. In this way, the copyright holder can ensure that their work does

not end up being part of a proprietary model.

2. The choice of the word "free" in this context has dogged the Free Software Foundation through-

out its life. The uninitiated think that "free" refers to cost. The Free Software Foundation often has to

qualify "free" with the statement "free as in freedom, not as in beer."

Milestones: The Story of WordPress

40

http://www.gnu.org/philosophy/free-sw.html

Copyleft works in the following way:

• The copyright holder asserts that they hold the copyright to the work.

• The terms of distribution — that anyone can use, modify, and

redistribute the work, provided they pass the same freedom on to

everyone else — are added.

If a programmer wants to use a copyleft work in their own software, then

that new work must provide the same freedoms as the original work. Copy-

right is turned on its head. It is used against itself, or, as Stallman puts it “we

use copyright to guarantee their freedom.” A copyleft license doesn’t aban-

don copyright (i.e., by simply putting a work in the public domain) it asserts

it and uses it.

The GPL is often described as a viral license. This is because any code inte-

grated with GPL code automatically adopts the license. The GPL spreads. For

free software proponents, this is important. It means that the body of work

that constitutes the commons is self-sustainable and self-perpetuating, thus

preserving freedom.

To see copyleft in action, simply open up the license that comes bundled with

WordPress. The head contains the following:

b2 is (c) 2001, 2002 Michel Valdrighi – m@tidakada.com –

http://tidakada.com

Wherever third party code has been used, credit has been given in the

code’s comments.

b2 is released under the GPL and WordPress – Web publishing software

Copyright 2003-2010 by the contributors

WordPress is released under the GPL

“““““

Milestones: The Story of WordPress

41

http://www.gnu.org/copyleft/

It’s the perfect example of how a copyleft license works. Michel asserted his

original copyright for b2 and then distributed it under the GPL, which said

that anyone was free to distribute and modify it, provided they pass those

freedoms on. This meant that when it was originally forked, the developers

had no choice but to license WordPress under the GPL. Michel’s intention

to preserve b2’s freedom worked. It also means that anything that includes

WordPress source code must also be GPL, so all WordPress users, no matter

which form they use WordPress in, have the same freedoms. And when b2

was in danger of becoming vaporware, the license enabled Mike and Matt to

fork it, and use the code as a base to continue development. The commons, of

which the code is a constituent part, continues.

Mike’s passion for free software is an important foundation for WordPress’

development. b2 was the first free software project that Matt had been

involved in. While he later developed a strong belief in the role of free soft-

ware, it was in b2, and then in the early days of WordPress, that Matt first

learned about the free software ethos, as a result of Mike’s influence. “That’s

the thing I really learned from Mike,” says Matt in a 2010 interview. “b2 was

the first open source project I was really involved with. I didn’t even really

understand what that meant.”

The GPL complements a user-first development focus because the license

emphasizes the user freedoms. This is perhaps one of the biggest misunder-

standings around the license. When the GPL talks about freedom, it is talking

about user freedom, not developer freedom, and often the freedom of users

comes at the expense of developers. Developers who want to use GPL code

in their own software are restricted to using copyleft licenses for their prod-

ucts. There are also restrictions on the code they can integrate with their GPL

code. To use a library in WordPress, for example, that library must be GPL-

compatible. This emphasis on freedoms has been a fault line along which

many debates in the project have happened.

The freedom of users is protected even further by the sheer number of project

contributors. Even if there was consensus among the project’s leaders on

Milestones: The Story of WordPress

42

http://wordpress.tv/2010/03/09/mullenweg-little-wordpress-interview/

changing the license, the freedoms of WordPress users would continue.

Thousands of people all over the world contribute to WordPress’ codebase.

Each person who writes code for WordPress retains their copyright, but

agrees to license the code under the GPL. This makes it virtually impossible

for the creators of WordPress to change the license. To do so, they would need

to contact every single contributor and ask them to agree to the change. This

would include everyone from the most prolific contributors, to those who

contributed a single patch, from today’s lead developers, to Matt and Mike,

and as far back as Michel. This means that WordPress will always remain

free.

The choice that Michael made about using the GPL has been one of the most

significant decisions in the project’s history. It’s meant that the software’s

distribution terms protect user-first development, ensuring that users are

free to do what they want. But what is the cost of user freedom? This is a

question that has come up again and again throughout the project’s history

as different groups have discovered their own rights and freedoms restricted,

whether they be designers, developers, or business owners.

Milestones: The Story of WordPress

43

CHAPTER 6

WordPress' First Developers

Once the WordPress branch was set up on CVS, Mike and Matt started mak-

ing changes. They were small and iterative, but they were the first steps that

moved WordPress away from its predecessor and marked the real begin-

ning of the project. Mike’s first commits involved repopulating files that were

missing from the branch, while Matt added wptexturize, a tool he created to

properly format plain text (straight quotes to curly quotes, for example, and

dashes to em dashes). Mike’s first feature was the excerpt functionality which

allows users to display handcrafted post summaries in RSS feeds and in other

places.

Over the coming months, Mike and Matt made over 100 commits to the

WordPress repository. Notable commits included WordPress’ branding,

Mike’s b2links hack, which remained in WordPress until it was no longer

turned on by default in WordPress 3.5 (released in 2012), major changes to

the administration panel, and installation process improvements. Creating

a simple installation process was something that both the developers felt

strongly about. It was important that WordPress have a low barrier to entry.

Anyone should be able to get on the web and publish their content. Matt

replaced the b2install.php file with a new wp-install.php file. The

aim was to keep configuration to a minimum. In the first version, the user

had to create a MySQL database, add the configuration details to b2con-

fig.php, transfer the files to their server using FTP, and then run the

script. The “famous 5-minute install” was refined over time as the developers

worked to simplify the process.

While developing WordPress, Mike and Matt were still active on the b2

forums, talking about the new software. But there were a few months after the

44

http://developer.wordpress.org/reference/functions/wptexturize/
http://core.trac.wordpress.org/browser/trunk/wp-admin/b2install.php?rev=38
http://core.trac.wordpress.org/browser/trunk/wp-admin/wp-install.php?rev=45

WordPress project started when it was unclear which fork would be b2’s offi-

cial successor. On May 23rd 2003, Michel announced that once WordPress

was launched, it would become the official branch of b2.

On May 27th 2003, the first version of WordPress, WordPress 0.7, was

released. Users who switched from b2 to WordPress got some new features,

most notably the new, simplified administration panel and the WordPress

Links Manager, which allowed users to create a blogroll.

Once WordPress 0.7 shipped, there was an effort to get other developers

involved in the project, starting with Donncha Ó Caoimh and François

Planque, both of whom had created their own b2 forks.

On May 29, 2003 Matt emailed Donncha to ask if he would consider merging

b2++ with WordPress. Donncha agreed, raising the number of official Word-

Press developers to three. Matt also contacted François Planque to join the

project and rewrite his b2evolution improvements for WordPress. François

considered it, but felt that “it was too much work for too little benefit.”

Over the year, Dougal Campbell, (dougal) and Alex King joined the team.

Although not a b2 user, Dougal had investigated using b2 for his blog, and

had blogged about writing his own blogging software. Alex had been more

actively involved in the b2 community — while he didn’t have a background

in PHP, he learned it through the platform and the community. He particu-

larly recalls Mike Little helping him refine and improve his code.

It took Dougal and Alex some months to get properly involved. Dougal was

busy with work, and Alex’s first impressions of WordPress weren’t positive.

He wrote about upgrading from b2 0.6 to either WordPress 0.7 or b2++.

Installing WordPress didn’t offer any significant speed improvements, while

b2++ gave him a site that he couldn’t log into. He decided to wait until the

next version of WordPress to upgrade. Matt responded, noting that there

would be significant improvements to database speed later on. WordPress

0.71’s release announced a 300% performance boost: “We’re not kidding,”

the announcement post reads, “this release will perform about three times

Milestones: The Story of WordPress

45

http://www.cafelog.com/index.php?p=500&c=1
http://wordpress.org/news/2003/05/wordpress-now-available/
http://wordpress.org/news/2003/05/wordpress-now-available/
http://ocaoimh.ie/2003/05/29/b2-updates-referer-spamming-b2-and-wordpress/
http://b2evolution.net/about/evolutionofb2.html
http://profiles.wordpress.org/dougal
http://dougal.gunters.org/blog/2002/11/12/software-development/
http://alexking.org/blog/2003/05/27/b2-wordpress-and-b2
http://alexking.org/blog/2003/05/27/b2-wordpress-and-b2#comment-199
https://wordpress.org/news/2003/06/wordpress-071-now-available/

(or more) faster than previous releases of WordPress and b2.” It wasn’t, how-

ever, fast enough to convince Alex to upgrade. He and Matt kept in touch and

in July 2003, Alex announced that he would help Matt launch a hacks section

on WordPress.org.

In the early days, WordPress developed organically. A new developer’s first

change tended to be a small, iterative step, before they worked on a pet fea-

ture. Most developers focused on web development areas they had an interest

or a background in. Matt, for example, focused on semantics and usability.

Mike improved his b2 links plugin. He also introduced wp-config-

sample.php. At the time, all b2 and WordPress configuration information

was stored in b2config.php. This meant that upon upgrade a user had to

store the file and information safely. If they overwrote it, their configuration

information would be lost, and they’d end up on the support forums looking

for help. Including wp-config-sample.php meant that there was no wp-

config.php file bundled with WordPress — the user renamed the file wp-

config.php, protecting it from being overwritten. This configuration file

protection was something Mike had done for previous clients, and while he

recalls now that it seems like an obvious thing to do, it solved a problem that

users had encountered repeatedly.

Dougal’s major focus was the XML-RPC API which, at that time supported

Blogger’s API. XML-RPC is a remote transfer protocol, which allows for

remote calls via HTTP. This means that the user can post to their blog or

website using a client. The Blogger API didn’t cover all of the features that

WordPress had. The Movable Type API and MetaWeblog API had additional

features that built upon the Blogger API. Dougal added the new features so

that the XML-RPC layer covered WordPress’ entire feature set. At the time,

people would check their RSS feed over and over again and it would regen-

erate just like a pageview. This could increase the load on the server, slowing

the site down. Dougal worked on improving these capabilities, speeding it up

by including a cached version.

Alex’s first project was checking in a cursor-aware quicktag code. This

Milestones: The Story of WordPress

46

http://alexking.org/blog/2003/06/10/wordpress-71
http://alexking.org/blog/2003/07/23/wordpress-hacks
http://wordpress.org
http://wordpress.org/news/2003/06/huge-changes-in-cvs/
http://wordpress.org/news/2003/06/huge-changes-in-cvs/
http://wordpress.org/support/topic/how-to-upgrade-from-71-to-72
http://wordpress.org/support/topic/how-to-upgrade-from-71-to-72

enabled users to highlight a word in the text editor and use a hotkey to sur-

round the text with HTML tags. In the end, the hacks section on Word-

Press.org that he had posted about on his blog was never built. Hacks were

superseded by the plugin system.

In parallel to WordPress developments, Donncha worked on WPMU (Word-

Press MU). The original plan was to merge the b2++ codebase with the Word-

Press codebase, but they ended up remaining separate and b2++ became

WPMU. WPMU had its own version control system and, eventually, its own

trac instance. Donncha recalls that WordPress and WPMU targeted different

audiences. “Most people just have one blog,” says Donncha, “they don’t have

half-a-dozen blogs running on one server so multiple sites wouldn’t have

been a requirement for most people.” Over time, this situation changed as it

became easier and cheaper for people to host their blogs and websites, but in

2003, it didn’t make sense to have multi-user functionality available to every

WordPress user. Instead, Donncha worked on WPMU alongside WordPress,

and merged the changes from WordPress into WPMU. When a new version

of WordPress was released, Donncha had to merge each file individually into

WPMU. He used Vimdiff to load the two files side by side so he could review

changes and push them from one file to another. It wasn’t always easy. “I had

to keep track of the changes that were made in case they broke anything. So

at the back of my mind I’d be thinking ‘did that change I made five files back,

will that affect this change?'” As WordPress got bigger and bigger, the merges

became more difficult to manage.

In late 2004, a now long-standing WordPress developer took his first steps

into the community. Ryan Boren, (ryan), was a developer at Cisco Systems.

Like Mike, Ryan is a big advocate of free software; he’d contributed to free

software projects before, particularly Gnome and Linux. When he found

WordPress, he’d been looking for a free and open source blogging platform.

Ryan had been blogging for a number of years. His earliest blog posts were on

Blogger, and then Greymatter, until he decided that he “wanted something

new and a little nicer.” He liked WordPress’ markup and CSS, so he made the

Milestones: The Story of WordPress

47

http://mu.trac.wordpress.org/
http://archive.wordpress.org/interviews/2013_05_03_OCaoimh.html#L97
http://vimdoc.sourceforge.net/htmldoc/diff.html
http://archive.wordpress.org/interviews/2013_05_03_OCaoimh.html#L111
http://profiles.wordpress.org/ryan

switch, scratching his own itch by writing a Greymatter importer to move his

content to WordPress.

Almost straight away, Ryan had influence in the community, writing huge

amounts of code and also providing advice on how WordPress development

should be carried out. He had more free software project experience than

anyone else at the time, and he was on forum threads sharing his thoughts

on how things should be run. While he had little experience with PHP at

that time, his coding background allowed him to quickly learn. It wasn’t long

before he was given commit access to the WordPress repository.

Milestones: The Story of WordPress

48

CHAPTER 7

Inside the Bazaar

In these first days of WordPress, new developers often received commit

access to the code repository. This meant a developer could work on code and

add it to the core software. There was no requirement for code review (though

sometimes code would be sent around among developers before being com-

mitted). WordPress was still a small blogging script used mainly by the peo-

ple who’d written the software. Many of the early commits are from names

absent from the commit logs today: mikelittle, alex_t_king, emc3

(dougal), and even michelvaldrighi, who came back and contributed to

WordPress.

There was no real process in those early days. It was the extreme of what

Eric Raymond talks about in his work, The Cathedral and the Bazaar. Ray-

mond contrasts the open source bazaar-style development model with the

“cathedral building” of traditional software development. The metaphor of

the bazaar is apt, with its noise and bustle; people talking on top of each

other, each with their own aim and agenda. A free software project operates

in this jumble. Common sense tells you it’s all wrong but, just like the bazaar,

this throng somehow works.

The first two years of the WordPress project were marked by this laissez-

faire approach to development. A developer saw a problem and fixed it. If a

developer was interested in a feature, they built it. They used their own expe-

rience as bloggers, as well as their b2 forum activity, to guide them. “As blog-

gers, we had similar desires to those other people had,” says Mike. “I seem

to remember still sticking around the b2 forums and looking at what people

were asking about and what people wanted while it was still in b2 and getting

inspiration and ideas from that.”

49

http://www.catb.org/esr/writings/cathedral-bazaar/cathedral-bazaar/
http://archive.wordpress.org/interviews/2013_03_26_Little.html#L138

It wasn’t until later that more hierarchy was introduced into the project, but

in those first few years it hardly mattered. So few people were actually using

the software. Many of the developers felt that they were working on blogging

software for themselves and if other people wanted to use it, great. The legacy

of that time, though, is that today’s developers must maintain and work with

all of that code.

A frequently asked question, particularly around the time of the fork, was

whether the new WordPress developers planned to rewrite the codebase. The

b2 emphasis on getting easy-to-use features on the screen quickly was often

at the expense of good coding practices. Michel was learning about PHP when

he wrote b2; he tried to get new features on the screen as soon as he imagined

them.

This simplistic, often chaotic, codebase put some developers off. Before join-

ing the project, Dougal posted to the support forum asking how far the devel-

opers intended to go with the rewrite: were they planning to rewrite the whole

codebase from scratch, or would something recognizably b2 still remain? The

response was that they planned to structure the code more logically as they

went along, with object-oriented code as a long-term goal.

There wouldn’t be a total WordPress rewrite. The WordPress project was

launched in the wake of Mozilla’s browser, which was the result of a three-

and-a-half year Netscape rewrite. Using Mozilla as a negative example, many

developers in the free software community argued that rewriting software is

a big mistake. While rewriting might produce an all-new codebase, it lacks

the years of testing and bug fixes that come from using a mature codebase.

It also leaves space for competitors to emerge while developers are focused

internally on rewriting.

Instead of a wholesale rewrite, WordPress’ developers worked to iteratively

improve and refactor code. For example, in late 2003, major changes to the

file structure of WordPress involved replacing “b2” files with “wp-”, dubbed

The Great Renaming. Tidying up b2’s files had been on Michel’s agenda in

2001 and he had made some improvements already, but they lacked consis-

Milestones: The Story of WordPress

50

http://wordpress.tv/2012/02/27/les-origines-de-wordpress-la-naissance-de-b2cafelog/
http://wordpress.org/support/topic/how-much-will-you-rewrite#post-16
http://wordpress.org/support/topic/how-much-will-you-rewrite#post-16
http://wordpress.org/support/topic/how-much-will-you-rewrite#post-33
http://wordpress.org/support/topic/how-much-will-you-rewrite#post-33
http://www.joelonsoftware.com/articles/fog0000000069.html
http://www.joelonsoftware.com/articles/fog0000000069.html
http://wordpress.org/news/2003/12/the-great-renaming/

tency. Now the WordPress project had decided to tackle the problem. When

the files were renamed with the new wp- prefix, instead of the old b2 one,

hack writers found that their hacks no longer worked, but it was believed that

the upheaval was necessary to organize the file structure for long-term stabil-

ity. WordPress’ file structure morphed from b2 to the familiar WordPress file

structure used today, with many files consolidated into the wp-includes

and wp-admin folders.

These sorts of iterative steps have been more of a feature of WordPress’ devel-

opment than any major restructuring or rearchitecting. And, over time, such

changes have become harder to do as the number of people using the soft-

ware means that many more sites are likely to break.

To facilitate development, the developers needed a way to communicate. The

hackers mailing list wasn’t set up for 17 months after project launch and the

project’s main developers communicated on a private mailing list. IRC was

one of the first tools the community used for communication. Freenode had

a b2/Cafelog channel, so it made sense for WordPress to have one too. The

first of these was #wordpress.

An IRC channel provides a virtual meeting space where people can instanta-

neously communicate with one another. It’s also possible to log an IRC chan-

nel so that a record of what happened can be posted online. In WordPress’

early days, many community members spent all day hanging out in the IRC

chat room. For some, it was the tone of the IRC chat room that got them more

actively involved in the WordPress community. Owen Winkler (ringmaster)

recalls:

I had stumbled on IRC channels for other programs before, and you

know, you ask a question and no one answers or they make fun of you.

WordPress was never like that. When I started out, if you came to the

channel and you asked a question, people answered the question. After

“

Milestones: The Story of WordPress

51

http://profiles.wordpress.org/ringmaster
http://archive.wordpress.org/interviews/2013_08_20_Winkler.html#L15

It was this camaraderie that caused people to stick around. Many of them

were learning to write code, making software for the first time, and they were

doing it together. Over time, WordPress spawned more IRC chat rooms. The

#wordpress IRC chat room morphed into a place for user support, with

a small community of regulars that frequented it. The #wordpress-dev

channel became the place where WordPress development took place, includ-

ing weekly meetings and development chats. There were also individual chat

rooms for the teams that worked on different areas of the project. 1

WordPress.org forums were the other communication tool that the project

had right from the beginning. WordPress.org launched in April 2003; ini-

tially it was home to the development blog, some schematic documentation,

and support forums. The original WordPress homepage told the world that

“WordPress is a semantic personal publishing platform with a focus on aes-

thetics, web standards, and usability.” The site gave the WordPress commu-

nity a presence and the forums provided a home.

Originally, the forums ran on miniBB, but as the number of people on the

support forums grew, the software couldn’t handle the load. In 2004, while

stuck in San Francisco over Christmas, Matt took what he’d learned from

WordPress and applied it to forum software, writing bbPress. Now, bbPress

is a plugin, but when it was originally coded, it was stand-alone piece of soft-

ware with its own templating system. Matt wrote in the launch post that he

wanted to “bring some weblog and WordPress sensibilities to forum soft-

ware.”

Today, the WordPress.org forums are mostly used for providing support

to users and developers, but back when they were first set up, they were

you learned a bit, if you stuck around, you would answer the questions

too.

1. In late 2014, the WordPress project moved its communication from IRC to Slack.

Milestones: The Story of WordPress

52

http://web.archive.org/web/20030618021947/http://wordpress.org/
http://ma.tt/2004/12/bbpress/

the community’s primary method of communication. The first post on the

forums appeared before WordPress was even released, with a request to beta

test the software. Word had gotten out about a b2 fork and people were eager

to use it.

The support forums became a place to talk about everything related to Word-

Press: the WordPress.org website, bug reports, troubleshooting, and requests

for design feedback. People also posted hacks and later, plugins.

Developers communicated on these open channels, but anyone was able to

join in. It didn’t take long for people who weren’t developers to gravitate

toward the project. Sometimes, these were people who used WordPress, but

lacked the technical skills or confidence to actively contribute to the code.

Others were more interested in the support roles essential to a successful pro-

ject — writing documentation, for example, or providing support. Some of

these people would go on to have just as big an influence on the project as any

of the developers.

Milestones: The Story of WordPress

53

https://wordpress.org/support/topic/beta-test?replies=12
https://wordpress.org/support/topic/beta-test?replies=12
http://wordpress.org/support/topic/wordpressorg-feedback?replies=19
http://wordpress.org/support/topic/textile-breaks-when-editing-posts?replies=3
http://wordpress.org/support/topic/weird-message?replies=3)
http://wordpress.org/support/topic/critisism-of-my-new-design?replies=4)
http://wordpress.org/support/topic/critisism-of-my-new-design?replies=4)
http://wordpress.org/support/topic/wiki-links-hack?replies=4

CHAPTER 8

Support and Documentation

Many early WordPress developers got their start answering support forum

questions. Support was also an entry point for people who worked on other

aspects of the project. A user installs the platform, encounters a problem, and

visits the support forum to ask a question. That user sticks around, surfs the

forums, or hangs out in the chat rooms. Then, someone asks a question that

they know the answer to and that’s it, they’re hooked. Mark Riley (Podz) was

one of the first WordPress.org forum moderators. “You’re a hero to somebody

every day, aren’t you?” he says. “There’s nothing like somebody saying thank

you. ‘Yay, you fixed it! It works!’ You’re thinking, ‘Cool. I’ll remember that.

That was cool. I like doing this.’”

A contributor community grew in parallel to the development community.

Developers wrote code, other contributors helped with support and docu-

mentation. People tried WordPress, liked it, and wanted to help out. Craig

Hartel (nuclearmoose) was an early contributor. He signed up at Word-

Press.org in November 2003. Like many contributors, he was interested in

blogging and had programming experience. “I didn’t have any specific skills,”

he says, “but there was no better way than jumping right in. I decided I was

going to find some way to get involved.” He asked questions, dropped hints

that he wanted to help, and after hanging out on the IRC channel, “realized

that getting involved was a matter of just doing something.”

The project’s user-centric focus meant there were ways for people from a

variety of backgrounds to help. Anyone could answer support forum ques-

tions, write documentation, or get involved with IRC discussions. Some con-

tributors found that while developers aren’t always good at explaining things

to non-technical users, they could translate “developer speak” into “user

54

http://profiles.wordpress.org/podz
http://archive.wordpress.org/interviews/2013_07_04_Riley.html#L37
http://profiles.wordpress.org/nuclearmoose/
http://archive.wordpress.org/interviews/2013_04_21_Hartel.html#L7
http://archive.wordpress.org/interviews/2013_04_21_Hartel.html#L9

speak.” These community members acted as advocates for users; Mark Riley,

for example, became a go-between for the support forums and the wp-

hackers mailing lists. As the developers became more absorbed in developing

the software and started using it less, this sort of user advocacy became

increasingly important.

Not long after WordPress launched, blogs starting cropping up dedicated to

the platform. The first, Weblog Tools Collection (WLTC), was a blog that

Mark Ghosh (laughinglizard) initially launched to cover every type of weblog

tool. It was the first of many WordPress community blogs, followed by Word-

log by Carthik Sharma (Carthik), and Lorelle on WordPress by Lorelle Van-

Fossen (lorelle).

These were places outside official channels where people congregated —

where enthusiasts could write about the growing platform, providing infor-

mation, tutorials, and commentary. Some focused on tutorials, sharing

guides on how to do things with WordPress, others created lists of plugins

and themes that drew large amounts of traffic. Mark Riley’s tamba2 blog,

for example, was home to a number of popular tutorials, and Lorelle Van-

Fossen, who wrote many popular tutorials, ported her writing over to Word-

Press’ official documentation. The authors soon discovered that people were

interested in what they had to say. “I suddenly got all of this attention for

not knowing a lot and not really doing a lot,” says Mark Ghosh, “and that

really pleased me.” The community respect he got for running WLTC spurred

him to help out more with the forums, write his own plugins, and get more

involved. Posts on WLTC about platforms like Movable Type quickly tailed

off and almost all of the posts are on WordPress, or on migrating from other

platforms to WordPress.

At its peak, WLTC received 12,000 to 15,000 unique hits per day, but Mark

was never fully able to take advantage of the traffic. Running a niche com-

munity blog takes a lot of work and doesn’t result in a huge monetary payoff.

“Most of the people who came to WLTC wanted news about plugins, or they

wanted to know how to do X, Y, or Z. They were trying to find this informa-

Milestones: The Story of WordPress

55

http://weblogtoolscollection.com/
https://profiles.wordpress.org/laughinglizard
http://wordlog.com
http://wordlog.com
http://profiles.wordpress.org/carthik
http://lorelle.wordpress.com
https://profiles.wordpress.org/lorelle
http://archive.wordpress.org/interviews/2013_04_28_Ghosh.html#L26
http://archive.wordpress.org/interviews/2013_04_28_Ghosh.html#L61

tion and the quality of audience was kind of low.” These site visitors weren’t

necessarily valuable to advertisers. However, WLTC played a major role in

the WordPress community’s development, providing a home for discussion

and debate away from WordPress.org.

With the project attracting so many writers and bloggers it’s no surprise that

six months after the project launch there were calls for documentation. Users

needed it and there were people willing to write it. The people answering

questions on the forums saw this need — users asked the same questions over

and over again. With good documentation they could help themselves. In

November 2003, WordPress’ first mailing list was set up — to discuss Word-

Press documentation.

The first schematic documentation was on the WordPress.org website, but

this was merely an outline that lacked content. By and large they were hold-

ing pages for content that was promised in the future:

The WordPress.org docs page in late 2003.

In December 2003, the WordPress wiki launched. Now, any contributor

could help with documentation. Free software projects often use wikis for

Milestones: The Story of WordPress

56

http://milestones.pressbooks.com/files/2015/11/2003_10_docs.png
http://milestones.pressbooks.com/files/2015/11/2003_10_docs.png
https://web.archive.org/web/20031203161840/http://wordpress.org/docs/
http://wordpress.org/news/2003/12/wordpress-wiki/

their docs. The advantage is that anyone can easily edit the content. Some

wikis require a login, while others can be edited by anyone. The downside to

using a wiki is that contributors have to learn a new tool with a new syntax for

creating content. This is particularly onerous when the free software project

is a CMS. A further problem is that, without careful curation, it can become

messy, out-of-date, and difficult to navigate.

Originally, the wiki was designed to complement the official documentation.

The landing page informed visitors that it was “designed for us to be able to

work together on projects.” While developers worked toward shipping Word-

Press 1.0 in January 2004, other community members worked furiously on

the wiki.

This was in contrast to the aborted work on the official documentation. An

FAQ and template documentation were created. But the majority of docu-

mentation was written on the wiki.

While the official docs felt formal and rigid — a place for only official docu-

mentation writers — the wiki was informal and free-form, an experimental

place where anyone could help out. By July 2004, the wiki was the main doc-

umentation for WordPress. It needed a name. In WordPress’ IRC chat room,

(monkinetic) suggested “Codex.” The community loved the suggestion. Matt

said it was “short, sweet, and we can totally own that word on Google.”

Writing documentation for WordPress wasn’t always easy, particularly in

those first few years. In a post on WordPress.org, Cena Mayo (cena), who had

taken on the role of reporting on the WordPress.org blog, outlined some of

the issues:

Part of the problem is the rapidly changing face of WordPress itself.

The CVS is currently at version 1.2-alpha, with almost daily updates. 1.2,

which will be the next official release, is much different from the widely

used 1.0.1/1.02 series, and even more different from the still-used .72.

“

Milestones: The Story of WordPress

57

http://web.archive.org/web/20030811221523/http://wordpress.org/docs/
http://web.archive.org/web/20031224140754/http://wiki.wordpress.org/
https://web.archive.org/web/20040402000122/http://wordpress.org/docs/faq/
https://web.archive.org/web/20040411104706/http://wordpress.org/docs/template/
https://web.archive.org/web/20040323105321/http://wiki.wordpress.org/
https://web.archive.org/web/20040323105321/http://wiki.wordpress.org/
http://wordpress.org/support/profile/monkinetic
http://profiles.wordpress.org/cena/
http://wordpress.org/news/2004/03/a-brief-introduction/
http://wordpress.org/news/2004/04/state-of-the-docs-address/
http://wordpress.org/news/2004/04/state-of-the-docs-address/

With changing file structures, new features appearing, new template tags,

and new database tables, writing formal documentation must have felt, with

this rate of change, like a pointless task. By April 2004, the software changed

so fast that much of the documentation on hacks (the standard way of extend-

ing WordPress) was out of date. With WordPress 1.2 shipping in May, a

huge amount of documentation needed to be written. But just before release,

something happened that distracted contributors from writing documenta-

tion and writing code, and that brought together everyone in the community.

Milestones: The Story of WordPress

58

CHAPTER 9

Freedom Zero

In early 2004, Movable Type was the most popular self-hosted blogging plat-

form. The blogcensus.net service pegged Movable Type at 70% of the market

share for self-hosted blog platforms in February 2004. It was used all over

the world, by everyone from individual bloggers to big media outlets.

On May 13th 2004, Six Apart, the company behind Movable Type, announced

changes to Movable Type’s license. Movable Type 3.0, the newest version,

came with licensing restrictions, which meant that users not only had to pay

for software that was previously free, but pay for each additional software

installation. Movable Type users were upset and angry about the license

changes, and they took to their blogs to tell the world. Anil Dash (anildash),

who was Vice President and Chief Evangelist at Six Apart, says:

Respected programmer and writer, Mark Pilgrim, wrote one of the most

Nobody had ever had an audience where by definition every single one

of your customers had a blog before. And so nobody had ever had a

social media shit storm before. And now you can see a fast food company

makes a stupid tweet, and they have like a checklist. They’re like, oh,

okay, we fired the intern, we’re sorry, it won’t happen again, here’s the

hashtag for how we’re going to apologize, we made a donation… like

you just run through the list. It doesn’t even get attention unless it’s

something really egregious. But it hadn’t happened before. And mostly

because nobody else had a lot of customers that were bloggers before. So

you might have one. But every single person we’d ever had as a customer

was a blogger.

“

59

http://web.archive.org/web/20040202101816/http://blogcensus.net/?page=tools
http://web.archive.org/web/20040202101816/http://blogcensus.net/?page=tools
http://web.archive.org/web/20040605225637/http://www.sixapart.com/corner/archives/2004/05/movable_type_de.shtml
http://web.archive.org/web/20040605225637/http://www.sixapart.com/corner/archives/2004/05/movable_type_de.shtml
https://profiles.wordpress.org/anildash/
http://archive.wordpress.org/interviews/2013_06_28_Dash.html#L9

influential posts on the license changes. In his post, Freedom Zero, Pilgrim

reminds his readers that while Movable Type had been “free” (as in free from

cost), it wasn’t free according to the definition of the Free Software Founda-

tion (free as in freedom, not as in beer), and while the source code might be

available, it wasn’t open source as defined by the Open Source Initiative. He

described Movable Type as having been “free enough”; developers could hack

on the code and add features, and while they couldn’t redistribute their mod-

ifications, they could share patches, so everyone had been happy enough.

Pilgrim, like Movable Type’s other customers, had watched as Movable Type

2.6 fell behind, while Six Apart focused on their growing hosted platform:

Typepad. He, and others, waited for Movable Type 3.0 to appear, only to dis-

cover that the new features were lacking and, worse, there was a new licens-

ing plan, so that “free enough” no longer meant free in any sense.

To continue to run his sites, Pilgrim would have to pay $535. Instead of pay-

ing that money to Six Apart, he donated it to WordPress. He wrote:

Freedom 0 is the freedom to run the program, for any purpose. Word-

Press gives me that freedom; Movable Type does not. It never really did,

but it was free enough so we all looked the other way, myself included.

But Movable Type 3.0 changes the rules, and prices me right out of the

market. I do not have the freedom to run the program for any purpose;

I only have the limited set of freedoms that Six Apart chooses to bestow

upon me, and every new version seems to bestow fewer and fewer free-

doms. With Movable Type 2.6, I was allowed to run 11 sites. In 3.0, that

right will cost me $535.

WordPress is free software. Its rules will never change. In the event that

the WordPress community disbands and development stops, a new com-

munity can form around the orphaned code. It’s happened once already.

In the extremely unlikely event that every single contributor (including

every contributor to the original b2) agrees to relicense the code under

a more restrictive license, I can still fork the current GPL-licensed code

““

Milestones: The Story of WordPress

60

http://web.archive.org/web/20070911032533/http://diveintomark.org/archives/2004/05/14/freedom-0
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://opensource.org/docs/definition.php
http://web.archive.org/web/20070911032533/http://diveintomark.org/archives/2004/05/14/freedom-0

Pilgrim’s post was one factor that led to an exodus from Movable Type to

WordPress. Even if users were willing to pay for their websites, what if Six

Apart changed their licensing terms again? How much would Movable 4.0

cost? How many sites would users be able to run? It was too easy for Six Apart

to change the rules, but WordPress’ rules could never change under its GPL

license.

Six Apart’s move galvanized the WordPress community. It helped grow the

WordPress platform. Dissatisfied Movable Type users needed a blogging

platform that was flexible and without restrictions. Mark Pilgrim pointed

them to WordPress, and the community was only too happy to help people

migrate. Andrea Rennick (andrea_r), who was a Movable Type user at that

time, recalls:

and start a new community around it. There is always a path forward.

There are no dead ends.

Movable Type is a dead end. In the long run, the utility of all non-Free

software approaches zero. All non-Free software is a dead end.

This site now runs WordPress.

““

That’s when I first heard people starting to say, ‘Hey, there’s this alter-

native’ and then the buzz went around. There’s an alternative. It’s easier

to use. You can set up multiple installs. You can’t set up multiple blogs

inside the platform but it was super easy to set up a whole new one on

your hosting site. It was a lot easier to install on a shared host too.

“

Milestones: The Story of WordPress

61

https://profiles.wordpress.org/andrea_r/
http://archive.wordpress.org/interviews/2014_06_05_Rennick_A.html#L15

The SourceForge graph showing the increase in the number of WordPress downloads between April and
May 2004.

WordPress downloads on SourceForge more than doubled, increasing from

8,670 in April, 2004, to 19,400 in May. The IRC chat rooms were buzzing.

Craig Hartel recalls: “We saw an opportunity to bring people who were pas-

sionate about something to our passion for WordPress. Maybe they would

find WordPress to be as good, if not better than Movable Type. We spent a

lot of time on the forums and directly with people to show that we were a

stronger community, that we weren’t the kind of community that was just

going to slap some information out there and then you were on your own.”

The decision not to rewrite the platform was prescient: if the community had

buried itself in a rewrite, it wouldn’t have been ready to welcome and support

all of the new WordPress users. Instead, they were ready. For weeks, every-

one was focused on helping “switchers.” Developers wrote scripts to help peo-

ple easily migrate from Movable Type to WordPress. Writers wrote guides

to migrating from Movable Type to WordPress. On the WordPress.org blog,

a post about Movable Type’s licensing scheme reminds users that the GPL

“ensures that the full source is available free of charge, legally.” And Word-

Press had its first mention on Slashdot, as a free and open source alternative

to Movable Type.

The WordPress community actively sought out people who were dissatisfied

Milestones: The Story of WordPress

62

http://milestones.pressbooks.com/files/2015/11/sourceforge-downloads.png
http://milestones.pressbooks.com/files/2015/11/sourceforge-downloads.png
http://sourceforge.net/projects/cafelog/files/WordPress/stats/timeline?dates=2003-04-01+to+2005-04-01
http://archive.wordpress.org/interviews/2013_04_21_Hartel.html#L49
http://carthik.net/blog/vault/2004/05/14/movabletype-to-wordpress/
http://carthik.net/blog/vault/2004/05/14/movabletype-to-wordpress/
http://wordpress.org/news/2004/05/new-pricing-scheme/
http://developers.slashdot.org/story/04/05/14/1314256/bloggers-assail-movable-types-new-pricing-scheme
http://developers.slashdot.org/story/04/05/14/1314256/bloggers-assail-movable-types-new-pricing-scheme

with Movable Type and suggested that they move to WordPress. As Anil

remembers, “I was responding in the comments on every single blog post that

had complained and saw on every single blog post Matt going in and saying

you should try WordPress. And I was livid.”

Pilgrim was one of many prominent people who moved from Movable Type to

WordPress. Another significant adopter was Molly E. Holzschlag. Along with

Porter Glendinning, Molly had written a book about Movable Type, Teach

Yourself Movable Type in 24 Hours, which was released the same week that

Movable Type launched. There were people who switched for reasons other

than licensing. They were frustrated by Movable Type’s functionality. For Om

Malik, Movable Type 3.0 had simply too many bugs.

When Six Apart changed Movable Type’s license, it threw into relief the

power relationship between developer and user. It became obvious that Six

Apart held the power. At any time, they could increase prices, change the

license, and change the rules. The license protected the developers. Word-

Press, on the other hand, had a license that protected its users, and it was to

this user-focused, user-driven community, that Movable Type users flocked.

Many of those who moved to WordPress would go on to become long-

standing community members. It was the first of many times that WordPress’

license, the GPL, would ignite the community, and its positive effects saw

WordPress go from a small fork of b2, to a competitor as a stand-alone blog-

ging platform.

Milestones: The Story of WordPress

63

http://archive.wordpress.org/interviews/2013_06_28_Dash.html#L9
http://www.molly.com/
http://www.g9g.org/
http://gigaom.com/2004/05/29/the-word-press-switch/

CHAPTER 10

WordPress 1.2 "Mingus"

Those who switched from Movable Type to WordPress did so at a time when

the software itself was in flux. May 2004 was the month WordPress 1.2

launched — a release that improved WordPress’ flexibility.

Before WordPress 1.2, developers extended WordPress using “hacks,” a con-

cept inherited from b2. A “hack” was a set of files bundled with instructions

on where to insert the code into the b2 core files. In b2, administration hap-

pened in a separate PHP file. The b2 user opened a text file — b2menu-

top.txt— to add the name of the PHP file that they wanted in the menu.

When the code ran, the new menu item would appear after the default menu

items. To add a hack to the administration screens, the user needed to place

the PHP file into the admin directory and add a reference to it in the text

file. If the hack output was supposed to appear on the website, the user

needed to edit b2’s index.php file to put it in the right place. It was a convo-

luted process that intimidated users uncomfortable with editing code. Also,

it meant that when a user updated b2, they had to save the text file and the

index file to ensure that their changes weren’t overwritten, and integrate their

changes back into the new files.

The plugin system brought dramatic changes. It uses hooks to enable devel-

opers to extend WordPress without having to edit core files. Hooks are trig-

gers placed throughout the codebase that developers use to run their own

code and modify the software. There are two types of hooks: filters and

actions. Filters were already available in b2 for developers to create hacks,

which changed content. For example, by using the_content filter, a devel-

oper can modify content under conditions they specify. Actions, which were

first added to WordPress 1.2, allowed developers to run code when events

64

http://core.trac.wordpress.org/changeset/1008

happened. For example, by using the post_publish action, a developer can

run code whenever a post is published.

The plugin system is an example of Ryan Boren’s influence early in the pro-

ject. As many other developers’ involvement trailed off, he dove straight in

to development. Mike Little recalls how he hadn’t noticed Ryan at first, that

he’d been active, but quiet about his contributions. It was the plugin system

that made Mike really take notice: “It shone brighter than most of the other

things that people were doing. And that’s not to say that people weren’t doing

good stuff, they were, but that was a step change. The hook system was a step

change in WordPress development, and it was probably the first step on quite

honestly making it the superior product that it is.”

The plugin system transformed WordPress for core developers and the wider

community. It meant that the core product didn’t need to include every devel-

oper’s pet feature, just the features that made sense for a majority of users.

Ryan says that the plugin system enabled core developers to implement the

80/20 rule: “Is this useful to 80% of our users? If not, try it in a plugin.”

Unlike hacks, which involved editing core files, plugins could be dropped into

a directory in a user’s WordPress install. Non-technical users were able to

extend their blogs without having to mess around with PHP. The barrier to

entry around extending WordPress inched lower.

The first plugin — which is still bundled with WordPress — the Hello Dolly

plugin, randomly displays a lyric from the Louis Armstrong song Hello,

Dolly! in the top right of the admin dashboard. It was intended as a guide

to making plugins. The second plugin was the blogtimes plugin, which gen-

erated a bar graph image showing when posts were created over a certain

period of time.

Internationalization was another major advancement in WordPress 1.2.

From its very beginning, the WordPress community was international in

nature. The original developers were from the United States, the United

Kingdom, Ireland, and France, and a forum thread from January 2004 shows

how international the growing community was. Community members came

Milestones: The Story of WordPress

65

http://archive.wordpress.org/interviews/2013_04_17_Little.html#L265
http://archive.wordpress.org/interviews/2013_05_15_Boren1.html#L65
http://core.trac.wordpress.org/changeset/1340
http://core.trac.wordpress.org/changeset/1340
http://wordpress.org/plugins/blogtimes/
http://wordpress.org/support/topic/world-domination-?replies=43
http://wordpress.org/support/topic/world-domination-?replies=43

from Hong Kong, Wales, New Zealand, Japan, and Brazil. With people from

all over the world using WordPress, translations soon followed. The Japanese

WordPress site was set up in December 2003, only six months after Word-

Press launched. As WordPress wasn’t yet set up for localization at that time,

(Otsukare), a community member from Japan, created a multilingual fork of

WordPress. This was an internationalized version of WordPress that people

could use to make their own localizations. It was popular among WordPress

users from non-English speaking countries who wanted WordPress in their

own language. Its popularity emphasized the necessity of internationalizing

WordPress. A lack of proper internationalization tools in WordPress could

have led many community members to use the fork instead. Maintaining two

codebases in this way would have been inefficient and bug-prone.

Ryan used gettext to internationalize WordPress, which he used in the

GNOME project. It involves marking up translatable strings with the get-

text() function, so that a .pot file is generated containing all the transla-

tion strings. Translators translate the strings and generate .po and .mo files

for localized versions of WordPress.

To internationalize WordPress, Ryan wrapped the translatable strings with

the gettext() function and put them in a format that provided a full string

to the translator, which retained context. He went through the code, one line

at a time, found everything that could be translated, and marked it up. This

meant that when WordPress 1.2 was released, it not only contained the plu-

gin API, but was fully internationalized.

On May 19th 2004 — before WordPress 1.2 was even released with the first

official .pot file — Pankaj Narula (panjak), released the first full localization

in Hindi using the new gettext method. Following the release of WordPress

1.2, there was an explosion of WordPress translations, including French and

Norwegian.

Version 1.2 made WordPress much more accessible and available to a wider

group of people. The plugin system turned WordPress from a straightforward

blogging tool into a publishing platform that anyone could extend — all you

Milestones: The Story of WordPress

66

http://web.archive.org/web/20031205101812/http://wordpress.xwd.jp/
http://web.archive.org/web/20031205101812/http://wordpress.xwd.jp/
http://profiles.wordpress.org/otsukare
http://wordpress.org/support/topic/localization-help-needed?replies=102
http://wordpress.org/support/topic/localization-help-needed?replies=102
http://www.gnu.org/software/gettext/
http://codex.wordpress.org/Translating_WordPress#Localization_Technology
http://wordpress.org/support/profile/pankaj
http://ma.tt/2004/05/wordpress-in-hindi/
http://ma.tt/2004/05/wordpress-in-hindi/
http://wordpress.org/support/topic/localizing-wordpress-12-i18n-and-l10n/page/3?replies=69%23post-35436
http://wordpress.org/support/topic/localizing-wordpress-12-i18n-and-l10n/page/3?replies=69%23post-35436#post-56422

needed was a bit of PHP knowledge. And if you couldn’t write PHP, you

still had access to the ever-widening commons of plugins, as developers cre-

ated new plugins and distributed their code. Internationalized code meant

that it was now possible for people all over the world to have WordPress in

their own language, and a community of translators quickly grew around the

software. Naoko Takano (Nao), who was an early member of the Japanese

community, recalls that there were other free software projects that didn’t

take translations seriously and that WordPress’ internationalization efforts

encouraged her to join the project.

Milestones: The Story of WordPress

67

https://profiles.wordpress.org/Nao
http://archive.wordpress.org/interviews/2013_05_30_Takano.html#L42

CHAPTER 11

The Birth of wp-hackers

WordPress 1.2 development discussions happened in the support forums,

the IRC chat rooms, and via private chat and email. But the community was

growing. The switchers from Movable Type had increased WordPress’ user

base, proper internationalization made WordPress more usable worldwide,

and the plugin system allowed developers to extend the platform. The grow-

ing community needed more diverse communication channels with which to

manage development, communicate, and support users.

Many community members were happy with just the forums and IRC, but

some developers wanted a mailing list. This was the case particularly for

developers with free software project experience. A mailing list is one of the

most important communication tools in a free software project, and at the

time, WordPress had no development mailing lists. It took more than a year

after the project’s inception for WordPress’ developer infrastructure to take

shape. The FAQ on WordPress.org reflects the approach to development at

the time:

I am a programmer/designer/hacker — can I help with the develop-

ment of WP?“
Sure you can! Post your suggestions and requests for features in the

forums. Design or alter some hacks to add functionality to the WP suite

of tools. Got some cool ideas on an innovative design? By all means,

build it and show it off! If you want to be directly involved in the daily

“

68

https://web.archive.org/web/20040402000122/http://wordpress.org/docs/faq/
https://web.archive.org/web/20040402000122/http://wordpress.org/docs/faq/

That was the process: post on the forums, blog about it, and email the lead

developers. There wasn’t a clear, single entry point for developers to go. The

forum didn’t provide the proper infrastructure that developers were used to

on free software projects. Ryan Boren had Linux development experience. He

posted to a discussion thread on the forum in 2003:

There was, in fact, a mailing list, but it was a private one with just Matt, Mike,

and the other early developers. It wasn’t publicly archived and it wasn’t pos-

sible for anyone to get involved with the discussion. There were no plans to

create a public mailing list as, at the time, they preferred development dis-

cussion to take place on the WordPress forums.

That discussion thread contains a seed of contention in the WordPress com-

munity — the division between people who didn’t write code and people

development of WP, the best way is to show your competence by build-

ing clean hacks or patches that conform to the developer guidelines.

Once you have some code out there, contact Matt and he’ll talk to you

about getting you involved more directly with development.

Communities are built around development mailing lists. That’s where

the bazaar really takes place. A BB [bulletin board] isn’t nearly as good

for sending and reviewing patches, performing UI reviews, and so forth.

The BB is a nice resource that has its purpose, but a mailing list is better

suited to development traffic. I would much rather use my favorite email

client with its editing, sorting, and filtering capabilities than any web BB.

Plus, the mail comes to me, not me to it.

Right now, I send all of my patches directly to Matt. I hope he gets them.

If there was a development mailer, I would send the patches there so all

interested parties could give them a look and see what people are work-

ing on.

““

Milestones: The Story of WordPress

69

http://wordpress.org/support/topic/development-culture-at-wp?replies=21
http://wordpress.org/support/topic/development-culture-at-wp?replies=21
http://wordpress.org/support/topic/development-culture-at-wp?replies=21#post-7523
http://wordpress.org/support/topic/development-culture-at-wp?replies=21#post-7523

who did. A developer mailing list could segregate the community into dif-

ferent groups — on the one hand developers, and on the other, everyone

else. “It’s exactly the mentality that causes most OS projects to become these

developer-heavy, ‘in-the-know’ kind of places that make them unpleasant

(and unapproachable) for the average user,” wrote Cena.

But with a growing developer base, a mailing list was inevitable. A mailing

list enables developers to ask questions about development, review patches,

and discuss new features. A developer can send a patch to the mailing list and

anyone can review it. It also helps to prevent the bottlenecks that can occur

when a patch is sent privately to a developer and sits in their inbox waiting

for review. Often, advanced users participate — those who either have ques-

tions about the product or who want to answer others’ questions. Mailing

lists serve a different purpose than an IRC chat room. To participate in a chat

room, a person needs to be online at the time a discussion takes place. They

can follow up by reading logs (if the chat room is logged), but that’s after-the-

fact.

The first mailing list in the project, however, wasn’t wp-hackers, but wp-docs,

which was set up in November 2003 to discuss WordPress’ documentation

and wiki. It was active for six months before the hackers mailing list was set

up in June 2004. This later moved to wp-hackers. Development discussion

shifted from the forums to the mailing list, leaving the forums as a place to

provide support.

The wp-hackers mailing list exploded with activity, busy with heated dis-

cussions about issues such as whether comment links should be nofollow

to discourage spammers, the best way to format the date, and how to start

translating WordPress. Developers finally had a place to congregate. They

embraced the new communication platform — their new home in the project.

As predicted in the 2003 support forum discussion, the mailing list further

cemented the division between those who provided support (whether by

answering support tickets or writing documentation) and those who wrote

code. Coders are usually more focused on solving code problems than helping

Milestones: The Story of WordPress

70

http://wordpress.org/support/topic/development-culture-at-wp?replies=21#post-7536)
https://web.archive.org/web/20090107221645/http://comox.textdrive.com/pipermail/docs/2003-November/000000.html
http://lists.wordpress.org/pipermail/hackers/
http://lists.wordpress.org/pipermail/wp-hackers/
http://plugins.lists.wordpress.org/pipermail/hackers/2005-January/003617.html
http://lists.wordpress.org/pipermail/hackers/2004-August/001335.html
http://lists.wordpress.org/pipermail/hackers/2004-December/003462.html
http://lists.wordpress.org/pipermail/hackers/2004-December/003462.html

with user support. But those providing support sometimes needed the input

of those who wrote the code. It frustrated many support forum volunteers

that the project’s developers weren’t usually available to help out.

Still, wp-hackers became an important place for WordPress development,

particularly during the project’s early growth. As is the general trend with

mailing lists, it became less useful over time, but for the first few years after

it launched, there was ongoing discussion about WordPress development.

Many important features were discussed and debated. It was the place where

many of today’s developers had their first taste of WordPress.

The WordPress Plugin Repository was the other development resource that

appeared around this time. The WordPress Plugin Repository launched in

January 2005. Hosted at dev.wp-plugins.org, and powered by subversion and

trac, it’s quite different from the user-friendly plugin directory that we’re

used to today. Literally, the plugin repository was just a code repository.

In order to make it a little more accessible, a wiki was used to create an early

version of the Plugin Directory.

Milestones: The Story of WordPress

71

http://lists.wordpress.org/pipermail/hackers/2004-July/000962.html
http://wordpress.org/news/2005/01/the-wordpress-plugin-repository/

The Hrst version of the WordPress Plugin Directory, in late 2005.

While being full of developer tools, it didn’t have an easy interface to allow

users to find the right plugins. Trac and wikis can often be difficult for non-

technical software users to navigate. Users just want to get what they want,

easily, and interfaces that look code-heavy can be confusing and off-putting.

For developers, however, the repository nurtured the free software commu-

nity’s inclination toward code sharing, and was the first step toward the plu-

gin directory on WordPress.org.

Milestones: The Story of WordPress

72

http://milestones.pressbooks.com/files/2015/11/plugin-directory-2005.jpg
http://milestones.pressbooks.com/files/2015/11/plugin-directory-2005.jpg
https://web.archive.org/web/20051124163617/http://dev.wp-plugins.org/wiki/PluginDirectory

Part Three

Committers and themes!

Balance day job with passion

A company forms

CHAPTER 12

Themes

Templating was the next area ripe for improvement — users could extend

their blog and have it in their own language, but there wasn’t yet an easy way

to change their site’s design. Even in the b2 forums, many support questions

were about changing a website’s design. A blog is a visual representation of

the author, their tastes, and their interests — a blog is a home on the internet,

and, just as with any home, owners decorate it according to their tastes. To

change the look of a b2 or early WordPress blog, the user had to create a CSS

stylesheet. This changed the colors and layout on the front end. However, it

didn’t offer any real flexibility in site design; a robust templating system was

needed. Michel had looked into creating a templating system for b2, but it

was not until the transition between WordPress 1.2 and 1.5 that WordPress

got its theme system.

A lot of research went into finding the best approach to templating. Smarty

templates came up again and again. Smarty is a PHP templating system that

allows the user to change the front end independently from the back end.

The user can change their site’s design without having to worry about the

rest of the application. There are a number of posts on the WordPress.org

development blog discussing Smarty’s merits. Donncha even imported it to

the repository (his first commit to the project). But, despite sharing PHP with

WordPress, Smarty had a difficult syntax to learn. In the end, it was rejected

for being too complicated. What WordPress needed was a system as easy to

use as the software itself.

While templating system discussions continued, WordPress users got cre-

ative with CSS stylesheets. To make switching designs easy, Alex King wrote

a CSS Style Switcher hack, which came with three CSS stylesheets. Not every-

74

http://wordpress.org/news/2003/04/smarty-and-smarttemplate/
http://core.trac.wordpress.org/changeset/530
http://core.trac.wordpress.org/changeset/530
http://wordpress.org/support/topic/smarty-the-templating-system-that-came-from-hell?replies=6#post-22474
http://wordpress.org/support/topic/smarty-the-templating-system-that-came-from-hell?replies=6#post-22474
http://alexking.org/blog/2004/01/20/wordpress-css-style-switcher

one who had a WordPress blog wanted to create their own stylesheet, and

many didn’t know how. Users needed a pool of stylesheets to choose from.

To grow the number of stylesheets available, Alex ran a WordPress CSS Style

competition. Prizes, donated by members of the community, were offered for

the top three stylesheets; $70, $35, and $10, respectively.

Creating a resource similar to the popular CSS Zen Garden was the secondary

aim of the stylesheet competition. Just as the CSS Zen Garden showed off

CSS’ flexibility, a CSS stylesheet repository would show off WordPress’ flexi-

bility.

The competition created buzz in the community. In total, there were 38 sub-

missions. Naoko Takano won the first competition with her entry, Pink Lil-

lies:

Pink Lillies, by Naoko Takano.

The competition successfully widened the pool of available stylesheets,

increasing the number from seven to 45. On his website, Alex launched a style

browser to allow visitors to view the different stylesheets. The competition

ran again in 2005, this time receiving more than a hundred submissions.

Milestones: The Story of WordPress

75

http://alexking.org/blog/2004/01/25/wordpress-css-style-competition
http://alexking.org/blog/2004/01/25/wordpress-css-style-competition
http://csszengarden.com
http://milestones.pressbooks.com/files/2015/11/pink-lillies.png
http://milestones.pressbooks.com/files/2015/11/pink-lillies.png
http://alexking.org/projects/wordpress/styles/sample.php?wpstyle=pink_lilies
http://alexking.org/projects/wordpress/styles/sample.php?wpstyle=pink_lilies
http://alexking.org/blog/2005/02/27/wordpress-theme-competition

By the second competition, the theme system was in place and designers had

more tools to design and build their theme. Alex’s experience in the second

competition, however, foreshadowed problems that would dog the commu-

nity in later years. In hosting 138 themes on his site, Alex had to review all

of the code to make sure there was nothing malicious, and to ensure that

each theme used coding best practices. He decided not to host the competi-

tion again in 2006 due to the sheer amount of work it required. WordPress’

growth meant there would be even more submissions, far too many for one

person to review. This problem persisted as the project grew: how does one

balance a low barrier to entry with achieving good code quality, particularly

in third-party plugins and themes?

Still, the 2005 competition showed off the flexibility of the brand new theme

system, which appeared in February 2005, in WordPress 1.5. 1 In the end,

the theme system was built using PHP, which is a templating language itself,

after all. Using a PHP template tag system was fast and easy, particularly

for WordPress developers and designers who were learning PHP. It was

“cheap and easy, and well-known and portable,” says Ryan. The theme sys-

tem breaks a theme down into its component parts — header, footer, and

sidebar, for example. Each part is an individual file that a designer can cus-

tomize. Designers use template tags to call different elements to display on

the front end. This bundle of files is a WordPress theme. A native WordPress

theme system, as opposed to a templating system such as Smarty, meant that

designers could design and build themes without learning an entirely new

syntax.

Bundled with WordPress 1.5 was a new default theme — an adapted version

of Michael Heilemann’s Kubrick. While some welcomed the new theme, oth-

ers were unhappy that it was chosen:

1. WordPress versions were skipped between 1.2 and 1.5. This was due to the length of time between

the two releases.

Milestones: The Story of WordPress

76

http://alexking.org/blog/2005/03/28/theme-competition
http://alexking.org/blog/2005/03/28/theme-competition
http://archive.wordpress.org/interviews/2013_05_15_Boren1.html#L101
https://web.archive.org/web/20041016090654/http://binarybonsai.com/archives/2004/08/22/kubrick-vs-wordpress/
https://web.archive.org/web/20041016090654/http://binarybonsai.com/archives/2004/08/22/kubrick-vs-wordpress/

The Kubrick Theme, which was WordPress’ default theme until 2010.

One of the problems with Kubrick was that it contained images; if a user

wanted to change their theme they had to use an external image editor. Some

felt that users should not be expected to download additional software just to

change their site’s design. Others thought Kubrick too complex; it had .htac-

cess issues, and that other (better) default theme choices existed. The thread

on the forums reached five pages with substantial flaming.

These types of fires ignite quickly in bazaar-style development. They can get

out of hand as people take their opinions to blogs and social media. As with

many debates in free software communities, the Kubrick debate burned fero-

ciously for a short time before fizzling out. But the brief outbreak portended

later debates about WordPress themes. There’s something about themes that

ignites passions more than other aspects of WordPress.

Milestones: The Story of WordPress

77

http://milestones.pressbooks.com/files/2015/11/kubrick.jpg
http://milestones.pressbooks.com/files/2015/11/kubrick.jpg
https://wordpress.org/support/topic/why-using-kubrick-on-13-is-a-mistake
https://wordpress.org/support/topic/why-using-kubrick-on-13-is-a-mistake

Still, by the release of WordPress 1.5, the software had two elements that

define the project and the community: themes and plugins. These two

improvements transformed WordPress from stand-alone software into an

extensible platform. Extensibility creates the right conditions for an ecosys-

tem to flourish. If a product is solid and attracts users, then developers will

follow, extending the software and building tools for it. The theme and plugin

systems made this possible, in both features and design.

Milestones: The Story of WordPress

78

CHAPTER 13

Development in a Funnel

Following WordPress 1.5, the software development process changed, precip-

itated by a version control system shift from CVS to a more modern version

control system, Subversion (SVN). 1 The most active contributors at that time

were Ryan and Matt, and when the move was made, none of the other origi-

nal developers had their commit access renewed.

A committer is someone who can use the commit command to make changes

to the group’s central repository. The number of people who can do this on a

project varies, with projects deciding on the number of committers depend-

ing on their own structure and philosophies. The question of who should have

commit access to the WordPress repository comes up again and again. There

are regular threads requesting that more people be given commit access.

The move from CVS to Subversion marked a long period in which WordPress

development operated through a funnel. Contributors created a patch,

uploaded it to Mosquito (and later trac), 2 and it was reviewed by one of

the committers who committed the code to the main repository. Over time,

the funnel narrowed as Matt’s focus went elsewhere and Ryan drove devel-

opment. This “funnel” development style has advantages and disadvantages,

and it was frequently the subject of discussion among the community, partic-

ularly on wp-hackers. The advantage of a funnelling process is that disagree-

1. A version control system is a tool for managing the changes to a piece of software, document, or

other collection of information. Each change is identified by a number and the name of the person

who has made the change. They are often accompanied by comments about what that change is. A

version control system allows a project to keep track of changes and also to revert changes as neces-

sary.

2. Mosquito was the first bug tracker used by the WordPress project. Later bug tracking moved to

trac.

79

http://lists.wordpress.org/pipermail/hackers/2005-February/004078.html
http://lists.wordpress.org/pipermail/hackers/2005-February/004078.html

ments about code happen on the mailing list, before a change lands in the

repository. The disadvantage is that one person has to review every patch,

which frustrates developers waiting for their patches to be committed.

As WordPress began to take shape as a recognized free software project,

with a defined development process and proper developer infrastructure,

Ryan’s previous experience guided many of these changes. WordPress dif-

fered in that Linux has only one committer — project founder Linus Torvalds

— whereas WordPress had two in Matt and Ryan. Over the years this opened

up to more and more committers. The other difference is that Linux has

“maintainers” who maintain different subsystems before pushing patches

upstream. This means that Torvalds doesn’t review the thousands of patches

that go into the kernel. He reviews a fraction of them and delegates review

to trusted subsystem maintainers. Although WordPress in the future would

move toward component maintainers, it never followed Linux in this man-

ner.

There are a number of reasons that people request commit access: to speed

up development, to prevent situations in which patches wait months for a

review, to acknowledge the contributions of project regulars, to create a more

egalitarian project structure. Adding a new committer to a project became

a major decision and the project’s approach changed dramatically from the

wild west days of coding in WordPress 0.7. When the project started, any-

one who demonstrated some technical expertise and minimal dedication got

commit access. All of those developers could commit code to the repository

whenever they wanted. But as the project and the number of users grew, it

became more important to have some sort of filtering mechanism. A com-

mitter is the filter through which the code is passed. When someone is given

commit access to the repository, it demonstrates a level of trust. It signifies

that a contributor is trusted to know which code should make it into Word-

Press.

Karl Fogel describes committers as “the only formally distinct class of people

found in all open source projects.” “Committers are an unavoidable conces-

Milestones: The Story of WordPress

80

http://www.linuxfoundation.org/content/23-how-patches-get-kernel
http://producingoss.com/en/producingoss.html#committers

sion to discrimination in a system which is otherwise as non-discriminatory

as possible,” he writes. As much as one tries to maintain that commit is a

functional role, commit access is a symbol of trust, both in terms of coding

skills and in a person’s adherence to the project’s core beliefs and ethos. A

power dynamic exists between those who have commit access and those who

don’t.

Committers provide quality control. To decide who to give commit access to,

a project maintainer has to first find people who not only write good code,

but who are good at reviewing other people’s code. This means being good at

recognizing places in which code can be improved and providing constructive

feedback. But there are other social skills that go along with being a commit-

ter. For one, the person needs to adhere to a project’s ideals. Within Word-

Press, this means being fully committed to the project’s user-first approach.

Committers also need to “play well in the sandbox.” Someone may write flaw-

less code, but if they are unable to work with others they aren’t going to make

a wonderful committer. It’s important to make good choices about who gets

commit access because once it’s been given, it’s difficult to take away.

In an attempt to avoid an “us and them” mentality in which committers have

higher status than everyone else, the WordPress project had only two com-

mitters. This meant that everyone was subject to the same review process and

the same rules. Opening it up to more people may have created dissatisfac-

tion among those who didn’t have commit access. But by not opening it up at

all, developers who felt that they could never progress within the current pro-

ject structure became frustrated. So few committers in a growing project also

meant a mounting number of patches that languished on trac as they awaited

review.

There is a perennial tug-of-war between those who contribute to the project

and those who maintain it, and even among the project leaders themselves.

Who gets commit access and for how long? What sort of status is attached to

commit? Should only lead developers be committers? What is a “lead devel-

Milestones: The Story of WordPress

81

http://producingoss.com/en/committers.html#choosing-committers

oper” anyway? Over the coming years these questions play out at various

stages in the project’s development.

Milestones: The Story of WordPress

82

CHAPTER 14

A New Logo

As development progressed, WordPress’ design and branding took shape.

Some of the first lengthy discussions about WordPress’ look and feel hap-

pened on the wp-design mailing list. This was a private mailing list of design-

ers and developers interested in crafting WordPress’ aesthetic. Michael

Heilemann (michael), Khaled Abou Alfa (khaled), Joen Asmussen (joen),

Chris Davis (chrisjdavis), Joshua Sigar (alphaoide), and Matt composed the

main group.

The first focused design discussion was about WordPress’ logo. Matt

designed the original logo; it was simply the word “WordPress” in the Dante

font:

The original WordPress logo.

Since the project was so small, community members had fun on the home-

page, riffing on the logo with versions for seasonal holidays, birthdays, and

other events.

83

http://lists.wordpress.org/pipermail/wp-design/
http://profiles.wordpress.org/michael
http://profiles.wordpress.org/khaled
http://profiles.wordpress.org/joen
http://profiles.wordpress.org/chrisjdavis
http://profiles.wordpress.org/alphaoide
http://milestones.pressbooks.com/files/2015/11/wp-logo-old.png
http://milestones.pressbooks.com/files/2015/11/wp-logo-old.png
http://milestones.pressbooks.com/files/2015/11/wp-logo-stpatty.gif
http://milestones.pressbooks.com/files/2015/11/wp-logo-stpatty.gif
http://milestones.pressbooks.com/files/2015/11/wp-logo-valentine.gif
http://milestones.pressbooks.com/files/2015/11/wp-logo-valentine.gif

These logos were created for WordPress.org special occasions.

Eventually, WordPress needed a professional logo. Usage was growing and

WordPress needed a logo that properly represented it. As a free software pro-

ject, the community was the first place to look for a logo. Community sug-

gestions were solicited. A mixed set of results came back, which were shared

with the wp-design group for feedback.

The first suggestions were from Andreas Kwiatkowski:

WordPress logo suggestions from Andreas Kwiatkowski.

Milestones: The Story of WordPress

84

http://milestones.pressbooks.com/files/2015/11/wp-logo-happy-dougal.png
http://milestones.pressbooks.com/files/2015/11/wp-logo-happy-dougal.png
http://milestones.pressbooks.com/files/2015/11/wp-logo-calvin.gif
http://milestones.pressbooks.com/files/2015/11/wp-logo-calvin.gif
http://lists.wordpress.org/pipermail/wp-design/2005-March/000163.html
http://milestones.pressbooks.com/files/2015/11/2005_03_wordpress-logo-proposal_kwiatkowski_1.png
http://milestones.pressbooks.com/files/2015/11/2005_03_wordpress-logo-proposal_kwiatkowski_1.png
http://milestones.pressbooks.com/files/2015/11/2005_03_wordpress-logo-proposal_kwiatkowski_2.png
http://milestones.pressbooks.com/files/2015/11/2005_03_wordpress-logo-proposal_kwiatkowski_2.png

A second batch came from Denis Radenkovic:

WordPress logo suggestions from Denis Radenkovic.

Logo feedback was mostly lukewarm, though some of the designers liked

Radenkovic’s heart logos, describing them as “instantly recognizable.”

The heart logo was iterated on, with another version posted to the design

mailing list:

Milestones: The Story of WordPress

85

http://lists.wordpress.org/pipermail/wp-design/2005-March/000171.html
http://milestones.pressbooks.com/files/2015/11/2005_03_wordpress-logo-proposal_radenkovic_sample.jpg
http://milestones.pressbooks.com/files/2015/11/2005_03_wordpress-logo-proposal_radenkovic_sample.jpg
http://lists.wordpress.org/pipermail/wp-design/2005-April/000175.html
http://lists.wordpress.org/pipermail/wp-design/2005-March/000173.html

Joen Asmussen’s iteration of the heart logo.

A version of the admin screen with Joen Asmussen’s hear logo in situ was

produced:

Milestones: The Story of WordPress

86

http://milestones.pressbooks.com/files/2015/11/2005_05_wordpress-logo-proposal_asmussen_sample.jpg
http://milestones.pressbooks.com/files/2015/11/2005_05_wordpress-logo-proposal_asmussen_sample.jpg

A version of the admin screen with Joen Asmussen’s heart logo in situ.

Community members weren’t the only ones tackling the logo. In March,

Matt met Jason Santa Maria at South by South West and asked him to try

redesigning the WordPress logo. They shared ideas about what they thought

the logo should be: “the things that kept coming up were not only the idea

of publishing but the idea of having a personal journal and a personal thing

that might have some sort of tactile overtones,” Jason says. “We were making

links to things like letterpress and journaling and any sort of older represen-

tations of what it meant to publish something in a physical form.” In April

2005, some of the early versions were shared with the wp-design group:

Milestones: The Story of WordPress

87

http://milestones.pressbooks.com/files/2015/11/2005_05_wordpress-logo-proposal_asmussen_admin.jpg
http://milestones.pressbooks.com/files/2015/11/2005_05_wordpress-logo-proposal_asmussen_admin.jpg
http://jasonsantamaria.com/
http://archive.wordpress.org/interviews/2014_01_22_Santa_Maria.html#L7)
http://lists.wordpress.org/pipermail/wp-design/2005-April/000182.html

The Hrst logo ideas sketched by Jason Santa Maria.

There were a number of responses from the designers on the mailing list: “a

little too aristocratic” was one of the comments. The designers felt that Denis

Radenkovic’s design was more in line with WordPress’ brand.

More designs were posted to the group:

Milestones: The Story of WordPress

88

http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria1.gif
http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria1.gif
http://lists.wordpress.org/pipermail/wp-design/2005-April/000194.html
http://lists.wordpress.org/pipermail/wp-design/2005-April/000194.html
http://lists.wordpress.org/pipermail/wp-design/2005-April/000185.html
http://lists.wordpress.org/pipermail/wp-design/2005-April/000185.html
http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria2.gif
http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria2.gif

Further iterations on the logo design from Jason Santa Maria.

The members of the mailing list didn’t seem to agree on WordPress’ aesthetic.

On one hand, there were people who felt that the logo should represent

warmth and community, and on the other hand, something classic and ele-

gant. To reach a consensus, discussions happened offline. Khaled reported

back:

The logo was finally decided on May 15th, when Matt sent an email to the

mailing list with the subject “I think this is it.” Matt’s message contained just

one image:

WordPress is meant to be the Jaguar or Aston Martin of Blogging tools.

[…] that line sets the stage for what the design of the branding should be.

Elegance, polished, and impecably [sic] designed is where we should be

aiming.

“

Milestones: The Story of WordPress

89

http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria3.gif
http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria3.gif
http://lists.wordpress.org/pipermail/wp-design/2005-April/000192.html
http://lists.wordpress.org/pipermail/wp-design/2005-April/000192.html

The Hnal design for the WordPress logo.

The major change to the logo, other than the new typeface, was the mark. The

creation of a mark gave WordPress a stand-alone element of the logo which,

over time, would be recognizable even without the word beside it. This could

and would be used in icons, branding, and t-shirts. It’s become instantly rec-

ognizable, helped by its appearance on WordCamp t-shirts the world over.

Milestones: The Story of WordPress

90

http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria-final.gif
http://milestones.pressbooks.com/files/2015/11/2005_04_wordpress-logo-proposal-santa-maria-final.gif

CHAPTER 15

WordPress Incorporated

As the number of people using WordPress grew steadily, more and more

needed to get done. Matt took a job at CNET, which allowed him to work on

WordPress alongside his day job. Ryan was working at Cisco, often 60 or 80

hours a week; he would come home to work on his hobby, WordPress. Apart

from time spent on the project, there are all sorts of associated costs that

come with running a growing project. Server costs, for example, that increase

as the project’s popularity grows.

At the start of March 2005, WordPress 1.5 had seen 50,000 downloads. Just

three weeks later, the number doubled to 100,000. To celebrate the land-

mark, there was a 100K party in San Francisco. On March 22, a group of

WordPressers got together at the Odeon Bar in San Francisco.

Jonas Luster (jluster) was at the party. Jonas was an employee at Collabnet,

the company behind Subversion. He and Matt had been talking about what

a company built around free software should look like. Matt had an idea for

an organization called Automattic: an umbrella company that would include

several WordPress organizations. The first of these was WordPress Incorpo-

rated. At the party, Matt asked Jonas if he’d like to be involved. Jonas said

yes.

Shortly afterward, Matt jumped on stage to announce WordPress Inc. — with

Jonas Luster as employee number one. By the following morning, a couple of

blogs had covered the announcement. A few days later, Matt went on holiday

leaving WordPress’ very first employee in charge.

Even as the party was going on, trouble was brewing. In February, a user

posted to the WordPress.org support forums asking about hundreds of arti-

91

http://wordpress.org/news/2005/03/fifty-thousand/
http://profiles.wordpress.org/jluster/
https://en.wikipedia.org/wiki/CollabNet
http://sfist.com/2005/03/22/wordpress_incorporated.php
http://sfist.com/2005/03/22/wordpress_incorporated.php
http://laughingsquid.com/matt-mullenweg-announces-wordpress-inc/
http://ma.tt/2005/03/wordpress-world-tour/
http://wordpress.org/support/topic/odd-wordpress-articles?replies=6
http://wordpress.org/support/topic/odd-wordpress-articles?replies=6

cles hosted at wordpress.org/articles/. The articles were about everything

from credit and healthcare to web hosting. The thread was closed by a forum

moderator. Blogger Andy Baio discovered the thread. He contacted Matt to

ask about what was going on.

The Google search results that show the articles hosted on WordPress.org. (Google and the Google logo are
registered trademarks of Google Inc., used with permission.)

Matt explained to Andy that he was being paid by a company called Hot

Nacho to host the articles on WordPress.org and that he was using the money

to cover WordPress’ costs. “The /articles thing isn’t something I want to do

long-term,” he told Andy, “but if it can help bootstrap something nice for the

community, I’m willing to let it run for a little while.” In addition to respond-

ing to Andy, Matt re-opened the support forum thread and left a response:

The content in /articles is essentially advertising by a third party that we

host for a flat fee. I’m not sure if we’re going to continue it much longer,

but we’re committed to this month at least, it was basically an experi-
“

Milestones: The Story of WordPress

92

http://milestones.pressbooks.com/files/2015/11/wp_org_spam.png
http://milestones.pressbooks.com/files/2015/11/wp_org_spam.png
http://wordpress.org/support/topic/odd-wordpress-articles?replies=6#post-160502

On March 30, while Matt was in Italy, Andy published an article about it on

his blog. The reaction from bloggers was bad: no matter what Matt’s inten-

tions, people saw the articles as a shady SEO tactic. A free software project

should know better than to work with article spammers. Not only was Word-

Press.org hosting the spammy articles, CSS had been used to cloak them. If

everything was above board, why not do it out in the open? The articles also

had an influence on WordPress.org’s hosts, TextDrive, who hosted Word-

Press for free on a server along with apps such as Ruby on Rails. Their servers

were overloaded with hits from the links in the Hot Nacho articles.

With Matt out of town, Jonas dealt with the fallout from Andy Baio’s article

on Waxy.org. It wasn’t clear where the line between WordPress.org and

WordPress Inc. lay, but Jonas was the only official-sounding person. He

fielded the tech community’s ire and spent the next few days putting out fires.

Jonas posted on his blog asking for calm, and that Matt be given the benefit

of the doubt.

The Hot Nacho articles were perceived as the first move by WordPress Inc. to

make money — an indication that Matt and Jonas were’t going to monetize

WordPress in an ethical manner. Jonas stressed that the articles had nothing

to do with WordPress Inc., but since it wasn’t clear at that time what Word-

Press Inc. actually was, people naturally lumped them together. By the next

day, Andy had updated his post to report that WordPress’ PageRank had

dropped to 0/0. WordPress.org had been removed from Google’s search

engine results.

ment. However around the beginning of Feburary [sic] donations were

going down as expenses were ramping up, so it seemed like a good way

to cover everything. The adsense on those pages is not ours and I have

no idea what they get on it, we just get a flat fee. The money is used

just like donations but more specifically it’s been going to the business/

trademark expenses so it’s not entirely out of my pocket anymore.

Milestones: The Story of WordPress

93

http://waxy.org/2005/03/wordpress_websi/
http://waxy.org/2005/03/wordpress_websi/
http://waxy.org/2005/03/wordpress_websi/#comment-18433
http://waxy.org/2005/03/wordpress_websi/#comment-18519
http://waxy.org/2005/03/wordpress_websi/#comment-18519
http://www.forevergeek.com/2005/03/wordpress_making_money_the_wrong_way/

The story escalated as major tech resources like The Register, Slashdot, and

Ars Technica picked it up. On March 31, Matt posted briefly on his blog to say

that he had just learned of what had happened and that he would get online

to address the questions as soon as possible. The comments are littered with

messages of support from people who would later be central to the project

and even from Matt’s rival. Matt also received support on WordPress’ sup-

port forums.

On April 1, Matt issued a full response. In it, Matt explains that he was strug-

gling to find a way to support the free software project, and that he felt that

his options were limited:

Hosting the articles on WordPress.org attempted to mitigate the free soft-

ware project’s costs. For many people, Matt’s response satisfied their con-

cerns and questions. But for others, it wasn’t enough. If a free software

project has to resort to turning its highly ranking website into a link farm,

what is the future viability of that project? Aren’t there other ways to support

it? Matt had been at the web spam summit in February, which had specifi-

cally addressed “comment spam, link spam, TrackBack spam, tag spam, and

To thrive as an independent project WordPress needs to be self-

sufficient. There are several avenues this could go, all of which I’ve given

a lot of thought to. One route that would be very easy to go in today’s

environment is to take VC funding for a few million and build a big com-

pany, fast. Another way would be to be absorbed by an already big com-

pany. I don’t think either is the best route for the long-term health of the

community. (None of these are hypothetical, they’ve all come up before.)

There are a number of things the software could do to nag people for

donations, but I’m very hesitant to do anything that degrades the user

experience. Finally we could use the blessing and burden of the traffic

to wordpress.org to create a sustainable stream of income that can fund

WP activities.

“

Milestones: The Story of WordPress

94

http://www.theregister.co.uk/2005/03/31/cnet_weblog_keyword_scam/
http://slashdot.org/story/05/03/31/196220/wordpress-banned-by-google-for-spamming
http://arstechnica.com/uncategorized/2005/03/4759-2/
http://ma.tt/2005/03/back-online/
http://ma.tt/2005/03/back-online/#comment-18670
http://ma.tt/2005/03/back-online/#comment-18673
http://wordpress.org/support/topic/support-matt-mullweg?replies=23
http://wordpress.org/support/topic/support-matt-mullweg?replies=23
http://ma.tt/2005/04/a-response/
https://web.archive.org/web/20050922005353/http://weblog.burningbird.net/archives/2005/04/01/there-is-communicationand-then-theres-not/
https://ma.tt/2005/02/at-spam-summit/
http://www.sifry.com/alerts/archives/000288.html
http://www.sifry.com/alerts/archives/000288.html

fake weblogs.” Hadn’t he, at that point, realized that there might be some-

thing dubious?

As with most storms on the internet, once the articles were removed and

Matt had apologized, the anger subsided. It did, however, have a lasting influ-

ence. The experience changed Matt’s thinking about spam. Instead of view-

ing it purely as something that appears in an email inbox, he now saw it

as web spam, which can quickly pollute the web. This influenced his think-

ing when developing Akismet, Automattic’s anti-spam plugin. And while

Matt had learned a harsh lesson about ethical ways to make money on the

web, it would return to haunt him again and again. Any time WordPress.org

clamped down on search engine optimization tactics, in themes for example,

irate community members would bring up Hot Nacho.

Jonas’ first few weeks at WordPress Inc. got off to an explosive start, and over

the next few months he continued to work unpaid as WordPress Inc.’s only

employee. He got in touch with major web hosts and created partnerships

so that WordPress.org could make money by recommending hosting com-

panies. He met with venture capitalists to talk about where WordPress was

going.

At an IRC Meetup in August 2005, Matt discussed some of the ways he

wanted to see the project supported. Instead of fundraising, he wanted to see

a company that could generate revenue. He said that “the goal, eventually, is

for it to be the biggest contributor someday, supporting community members

to work on WP full-time.” To protect the project from company liabilities,

donations would be kept separate. This would ensure that if the company was

sold, the project would be safe. In this chat, the “inc.” that Matt refers to isn’t

WordPress Inc., but the as-yet-unannounced Automattic. When asked about

employees, he said that the only one was Donncha, with Ryan Boren planned

for the future. WordPress Inc. itself petered out, disappearing with much less

fanfare than when it arrived. There wasn’t money available in WordPress Inc.

to pay Jonas a salary, especially when Matt was using his own salary from his

job at CNET to pay Donncha to work on WordPress.com.

Milestones: The Story of WordPress

95

http://archive.wordpress.org/interviews/2014_04_17_Mullenweg.html#L65
https://codex.wordpress.org/IRC_Meetups/2005/August/August03RawLog

The wider community was confused about what had happened with Word-

Press Inc., especially those who had watched Matt announce the company’s

launch on stage. In response, Matt posted a page on the WordPress Codex,

explaining what had happened:

The first movement toward making money to support WordPress was more

of a stumble than a step. It did produce some important lessons, however,

about how to run a business alongside a free software project. In any attempt

to run a business based on a free software project, the company is beholden

to two players: the company itself and the community. In terms of the com-

pany, investors have to be kept happy and employees have to be looked after.

The company needs to make money. On the other hand, it is the community

that is invested in growing the free software project, and assuring its integrity

and independence. Walking the line between the two can be difficult for any

community member, but particularly for a project founder or lead who has

multiple reasons for securing the future of both.

At the WordPress 100k party in March 2005, I talked about the for-

mation of a “WordPress Inc.” with Jonas Luster as the first employee.

That never really got off the ground, I continued my job at CNET and

Jonas (who I couldn’t afford to pay a salary) ended up going to work for

Technorati. It wasn’t even planned to be announced at the party (since

it wasn’t clear logistically how it would happen) but everyone was really

excited about it and I had an extra G&T (or two), we all got carried away.

“

Milestones: The Story of WordPress

96

https://web.archive.org/web/20110816084138/http://www.airbagindustries.com/archives/008169.php
https://web.archive.org/web/20110816084138/http://www.airbagindustries.com/archives/008169.php
https://codex.wordpress.org/User:Matt/WordPress_Inc_Story

CHAPTER 16

WordPress.com

As WordPress Incorporated fizzled, Matt pitched a WordPress-based blog-

ging network to his employers at CNET. Many major internet companies

had blogging networks including Google, Blogger, Yahoo 360, and Microsoft

Spaces. CNET also owned several domains, like online.com, that seemed per-

fect for a blogging network.

CNET decided against it, but the idea didn’t disappear. Matt decided to build

a blogging network himself. 1

First, he needed the WordPress.com domain name. At the time, it was owned

by Open Domain, an organization that registered domains and gave projects

permission to use them in return for acknowledgement. It was unclear

whether Open Domain was squatting on domains, or genuinely trying to help

free software communities. (They’d also registered Drupal.com, then donated

it to Drupal without incident). The WordPress community was understand-

ably perturbed by the idea of someone squatting on WordPress.com. Owning

the domain was key; there was little security in a blogging network without

control of its own name.

After months of wrangling, Matt acquired the WordPress.com domain and

work began. Donncha, as the developer of WPMU, was a perfect candidate

— and fortuitously, was looking for new work opportunities. When Matt

emailed the WordPress security mailing list to see if anyone was interested,

Donncha got in touch.

The new WordPress.com ran WPMU trunk. Development was fast. Donncha

1. CNET went on to be one of the first investors in Automattic.

97

http://www.opendomain.org/
http://archive09.linux.com/feature/140576
http://archive09.linux.com/feature/140576
http://buytaert.net/drupal-com
http://buytaert.net/drupal-com

worked on two servers and live-edited code. Without users to worry about,

he moved quickly. He improved user-focused functionality and built network

administration tools. The WPMU community helped, submitting patches to

clean up admin screens. Features like domain mapping and tags, which didn’t

sit well in WPMU, went into plugins.

Andy Skelton (skeltoac) was WordPress.com’s second employee — and first

acquisition. Andy had developed Blogs of the Day, a self-hosted stats plugin

that produced a list of each day’s most popular blogs. After meeting him

in Seattle, Matt brought Andy on board to create a stats plugin for Word-

Press.com based on Blogs of the Day which, for a number of years, was fea-

tured on WordPress.com’s home page.

WordPress.com opened to signups in August 2005, by invitation only, to

control user growth on untested servers. Many who were involved with the

WordPress project got WordPress.com blogs, including Lorelle VanFossen

and Mark Riley. Every new WordPress.com member also got one invite to

share.

People could also join by downloading the Flock browser, a browser with

built-in social networking tools. “I thought Flock was the future,” says Matt.

“First we did invites, and then we thought well, we’ll allow you to bypass

an invite if you’re using Flock because then we’ll know that you’re kind of a

social, in-the-know person.” Flock integrated with WordPress.com, and users

could use it to post straight to their blogs.

Both of these measures — invites and Flock — allowed WordPress.com to

grow in a steady and sustainable way. Putting in sign-up barriers controlled

the flow of people and helped ensure scalability. Nevertheless, demand

quickly outstripped supply; one invite even landed on eBay.

The influx of new bloggers also brought demands for support. Without a

clear distinction between WordPress.com and WordPress.org, many bloggers

made their way to the WordPress.org forums looking for help. This caused

Milestones: The Story of WordPress

98

https://profiles.wordpress.org/skeltoac
http://matt.wordpress.com/2005/08/15/invites/
http://lorelle.wordpress.com
http://mark.wordpress.com
http://archive.wordpress.org/interviews/2014_04_17_Mullenweg.html#L143
https://lorelle.wordpress.com/2005/08/23/wordpresscom-invite-on-ebay-2/

some discontent among WordPress.org forum volunteers, who felt that they

were doing free work for a service that would eventually become commercial.

The first attempt at WordPress.com-specific support was an email address.

Developers responded to the messages, diverting their attention from writing

code. “I found that I would spend half my day replying to users,” recalls Don-

ncha “and then being completely wrecked in that your mind is completely

taken off programming new features, or improving things, fixing bugs, just

because this whole thing is so tiring.” Plan B was a mailing list, followed by

WordPress.com-specific community support forums.

Eventually, support moved to a ticketing system led by Mark Riley, a veteran

of the WordPress.org support forums who became WordPress.com’s sixth

full-time employee. For a long time, he was solely responsible for support,

closing nearly 50,000 requests on his own. The next support person joined

in 2008; today, WordPress.com users have a robust community on their

own forums and a huge team of “Happiness Engineers” supporting them.

(Although it’s still not unusual for WordPress.com users to land on the Word-

Press.org forums.)

Creating a user-focused blogging platform like WordPress.com made sense in

the context of the WordPress project: WordPress has always been focused on

its users, on people who might not understand the mechanics of a server, but

still want a website. WordPress.com took this accessibility to the next level,

letting people fill out a form to get a blog with the power of WordPress. Still,

WordPress.com is a balancing act, trying to satisfy those who want a sim-

ple website builder, with those who want the flexibility and power of the core

WordPress software, and providing a middle ground for people who want a

website without building one from scratch.

However, a hosted service like WordPress.com needs a revenue stream to

pay for server costs, run the software, provide support, and pay staff. The

free software project, with its haphazard donations and income from hosting

companies, couldn’t maintain such a network on a wide scale. Word-

Milestones: The Story of WordPress

99

http://archive.wordpress.org/interviews/2014_04_08_OCaoimh.html#L48
http://archive.wordpress.org/interviews/2014_04_08_OCaoimh.html#L48

Press.com needed a supporting business focused on WordPress’ main audi-

ence: software users.

While the business end was coming together around the developers who had

built WordPress.com, Matt was working on another product that would influ-

ence the WordPress community, an anti-spam plugin called Akismet.

Milestones: The Story of WordPress

100

CHAPTER 17

Akismet

Online spam is the old annoyance of unsolicited mail, writ large and filling

digital inboxes worldwide. Initially limited to email, it quickly became a blog

issue: blog comment forms allow anyone to enter data, and any opportunity

for data entry is a doorway for spam. WordPress, like every other blogging

platform, is susceptible. Developers were working on anti-spam solutions as

early as 2005, with plugins like Spam Karma and Bad Behavior.

Matt was also working on an anti-spam solution. His first attempt was a

JavaScript-based plugin that modified the comment form to hide fields.

Spammers downloaded it, picked it apart, and learned to bypass it within

hours of launch. This is a common pitfall for anti-spam plugins; any widely-

adopted plugin quickly attracts spammer attention, and a work-around soon

follows. Regrouping, he tried a new tactic: crowd-sourced spam reporting. In

late 2005 Matt launched the Akismet plugin for WordPress. Akismet — short

for “Automattic kismet” — used the power of the community to create a plu-

gin that evolved alongside spammer tactics.

Each time someone comments on a website running Akismet, Akismet checks

the comment against all the spam in its database. If the comment is identified

as spam, it’s deleted. When spam comments inevitably get through, a site

owner can mark them as spam to remove them and add them to the database.

This means that as all the site owners using Akismet report spam, the pool

of spam comments in the database grows, making Akismet more and more

effective over time. “It’s like all the kids on the playground ganging up against

a bully.” says Matt, “Collectively we all have the data and the information to

stop spammers, certainly before they’re able to have a big impact.”

In November 2005, the wp-hackers mailing list discussed plugins to bundle

101

http://ma.tt/2005/10/akismet-stops-spam/
http://archive.wordpress.org/interviews/2014_04_17_Mullenweg.html#L97
http://lists.wordpress.org/pipermail/wp-hackers/2005-November/003162.html

with WordPress core, and an anti-spam solution topped the wish list.

Akismet came up, though not everyone was comfortable using a plugin with

a commercial element; Akismet is only free for non-commercial use. (Pay-

ment is based on an honor system that asks commercial users to self-report.)

Some questioned Akismet’s data collection and storage methods. Akismet

had one other significant shortcoming: it required a WordPress.com account,

and WordPress.com hadn’t officially launched. Using Akismet meant using

WordPress.com, which meant finagling an invitation or downloading the

Flock browser.

Despite the pushback, there was an equal amount of support. Some didn’t

find the pay-what-you-want system jarring, arguing that Akismet has server

costs to cover. When WordPress 2.0 beta came out that month, it was bun-

dled with Akismet. WordPress.com opened to the public two days later, mak-

ing both services available to anyone.

Concerns that a money-making plugin ships with WordPress continue. Dis-

cussions about Akismet surface perennially in the community, including

among core developers and at core team meetups. “It seems an unfair advan-

tage (for Automattic) and it cuts against WordPress’ goal of openness,” says

Mark Jaquith (MarkJaquith). “That being said, spam is still a huge problem

and Akismet is still the leading product, even though there are now alterna-

tives.”

The public nature of WordPress development makes it difficult to develop a

widely-adopted anti-spam tool. Dealing with spam via a service means that

the plugin code itself can be open source, while the algorithms for identifying

spam remain private. While there are often discussions about recommending

a selection of anti-spam options rather than bundling Akismet with Word-

Press core, this isn’t yet viable. “The moment we recommend five plugins,”

says Andrew Nacin (nacin), “the spammers will all target the other four that

don’t have the ability to evolve and learn like Akismet does.”

The problem of spam highlights the challenging intersection between busi-

ness and free software: including a freemium plugin with WordPress doesn’t

Milestones: The Story of WordPress

102

http://lists.wordpress.org/pipermail/wp-hackers/2005-November/003162.html
http://lists.wordpress.org/pipermail/wp-hackers/2005-November/003177.html
http://lists.wordpress.org/pipermail/wp-hackers/2005-November/003177.html
https://codex.wordpress.org/IRC_Meetups/2005/October/October26RawLog
http://lists.wordpress.org/pipermail/wp-hackers/2005-November/003189.html
http://ma.tt/2005/11/wordpresscom-open/
http://archive.wordpress.org/interviews/2013_11_22_Jaquith.html#L186
http://archive.wordpress.org/interviews/2013_11_22_Jaquith.html#L186
http://profiles.wordpress.org/MarkJaquith
http://archive.wordpress.org/interviews/2014_04_21_Nacin.html#L265
http://profiles.wordpress.org/nacin

gel with the software’s openness goals, but removing it would have a detri-

mental effect on users, contravening the project’s user-first principles.

Akismet is still bundled with core, and the debates continue.

Milestones: The Story of WordPress

103

CHAPTER 18

Shuttle

As people experimented with ways to make money with WordPress, design

changes were underway in the interface. Between 2005 and 2006, the Word-

Press community organized the “Shuttle” project to overhaul WordPress’

admin screens. Their aim: to create a coherent, distinct look for WordPress

by redesigning wp-admin, which had inherited its design from b2.

The group’s aesthetic refresh reimagined and modernized wp-admin, iterat-

ing on the design without re-architecting the interface or adding new fea-

tures. They started work in the wake of WordPress 1.5, which came out with

a set of admin screens ripe for improvement:

Just as dealing with spam revealed tensions in the development process,

Shuttle’s work highlighted a pressure point: squaring coherent design and

free software development. Design decisions, which are usually highly sub-

jective, seem not to lend themselves to a public process. To work effectively,

Shuttle felt they needed to tweak their methods.

104

http://milestones.pressbooks.com/files/2015/11/admin1_5.jpg
http://milestones.pressbooks.com/files/2015/11/admin1_5.jpg

Linus’s Law, outlined by Eric Raymond, says that “given enough eyeballs, all

bugs are shallow.” If there’s a bug in the software, make the code available

to many people; someone will see the solution. For an issue with a defined

answer, this can speed progress considerably. With design so subjective in

nature, however, Shuttle designers worried that an open process would lead

to too many cooks in the kitchen, and that competing opinions would lead to

stalemates.

Unlike WordPress’ core developers, the Shuttle group communicated via pri-

vate mailing list, wp-design. This list was open, but list archives weren’t pub-

lic. To be involved, a contributor had to be added to the group, and the group

had to agree to add the new member. Discussions among members indicate

that they deliberately tried to keep the group limited. “An open mailing list

would become so much noise and so little signal so quickly that there would

be no way we could move forward,” recalls Chris Davis.

The group remained small, with three main designers — Michael, Joen, and

Khaled — supported by coders responsible for realizing the design vision.

The group sent designs around among themselves, offered feedback on one

another’s work, and iterated on the design. They focused on specific ele-

ments, mainly the Post screen (post.php). Over the course of the project,

twenty-eight versions circulated among this group.

Milestones: The Story of WordPress

105

http://www.catb.org/esr/writings/homesteading/cathedral-bazaar/ar01s04.html
http://archive.wordpress.org/interviews/2013_11_18_Davis.html#L91

Version 8

Milestones: The Story of WordPress

106

http://milestones.pressbooks.com/files/2015/11/shuttlev8.jpg
http://milestones.pressbooks.com/files/2015/11/shuttlev8.jpg

Version 14

Milestones: The Story of WordPress

107

http://milestones.pressbooks.com/files/2015/11/shuttlev14.jpg
http://milestones.pressbooks.com/files/2015/11/shuttlev14.jpg

Version 21

Milestones: The Story of WordPress

108

http://milestones.pressbooks.com/files/2015/11/shuttlev21.jpg
http://milestones.pressbooks.com/files/2015/11/shuttlev21.jpg

Version 26

As the design process continued, elements of Shuttle were implemented in

WordPress. One of the earliest Shuttle designs increased the size of the title

field in the post.php edit screen.

Milestones: The Story of WordPress

109

http://milestones.pressbooks.com/files/2015/11/shuttlev26.jpg
http://milestones.pressbooks.com/files/2015/11/shuttlev26.jpg

In WordPress 1.5

In Shuttle

Milestones: The Story of WordPress

110

http://milestones.pressbooks.com/files/2015/11/write_post_title_1_5.jpg
http://milestones.pressbooks.com/files/2015/11/write_post_title_1_5.jpg
http://milestones.pressbooks.com/files/2015/11/write_post_title_shuttle.jpg
http://milestones.pressbooks.com/files/2015/11/write_post_title_shuttle.jpg

WordPress 2.0

Another iteration of the post.php screen collapsed elements like post sta-

tus, categories, and author.

In WordPress 1.5

Milestones: The Story of WordPress

111

http://milestones.pressbooks.com/files/2015/11/write_post_title_2_0.jpg
http://milestones.pressbooks.com/files/2015/11/write_post_title_2_0.jpg
http://milestones.pressbooks.com/files/2015/11/pods_wp_1_5.jpg
http://milestones.pressbooks.com/files/2015/11/pods_wp_1_5.jpg

In version 8 of Shuttle

Milestones: The Story of WordPress

112

http://milestones.pressbooks.com/files/2015/11/pods_shuttlev8.jpg
http://milestones.pressbooks.com/files/2015/11/pods_shuttlev8.jpg

In WordPress 2.0

When WordPress 2.0 shipped with Shuttle-inspired changes, the feedback

wasn’t entirely positive. Molly Holzschlag wrote that “what WP2.0 has gained

in interface appeal it’s lost in some practicality too.” Piecemeal implemen-

tation of their vision kept the Shuttle group from creating a single, cohesive

redesign.

The project was beset by other problems. Despite the closed mailing list,

progress stalled without a clear leader charged with the project’s overall

Milestones: The Story of WordPress

113

http://milestones.pressbooks.com/files/2015/11/pods_wp_2.jpg
http://milestones.pressbooks.com/files/2015/11/pods_wp_2.jpg
https://web.archive.org/web/20060203042213/http://www.molly.com/2006/01/05/wordpress-20-and-akismet/
http://lists.wordpress.org/pipermail/wp-design/2006-January/000559.html
http://lists.wordpress.org/pipermail/wp-design/2006-January/000559.html

vision. When one skims the mailing list’s archives today, it reads like a

design-focused discussion forum rather than the communications of a

focused team with a clear task. As the Shuttle team discovered, a group of

independent designers, each with their own ideas, can trip up design work as

surely as a mailing list full of hackers.

It took the group a long time to complete work. They discussed minor design

elements like rounded corners and gradients for lengthy periods, rather than

examining the fundamental needs and wants of WordPress users. “I don’t

know if we were cooperating enough on getting a unified feel and a unified

understanding of everything before we tried to actually apply our ideas to the

problem,” says Michael. Besides that, the contributors had jobs that absorbed

their time, so work happened in fits and starts. While the original plan was

to complete the admin redesign within three months, by mid-April 2005, this

slid to September. The team eventually missed the deadline for WordPress

2.0 in late 2005. The next deadline (for inclusion in WordPress 2.1, which

itself never materialized) was the end of January, though it was March 2006

before a complete set of mockups arrived.

It was then that Khaled sent out a comprehensive set of screenshots with his

vision for the new WordPress admin:

Milestones: The Story of WordPress

114

http://archive.wordpress.org/interviews/2013_11_06_Heilemann.html#L74
http://lists.wordpress.org/pipermail/wp-design/2005-November/000502.html
http://lists.wordpress.org/pipermail/wp-design/2005-November/000502.html

Milestones: The Story of WordPress

115

http://milestones.pressbooks.com/files/2015/11/Dashboard.jpg
http://milestones.pressbooks.com/files/2015/11/Dashboard.jpg
http://milestones.pressbooks.com/files/2015/11/Write.jpg
http://milestones.pressbooks.com/files/2015/11/Write.jpg

The rest of the group loved the designs, and the developers began coding.

Still, development dragged on. In mid-April, Michael Heilemann withdrew

from the project, saying that he had to prioritize other commitments. The

same month, Khaled asked whether Matt or Ryan would ever get around to

implementing the design. The response placed the redesign as a medium pri-

ority. Changes would be iterative.

On May 14 2006, Khaled posted a complete set of designs to his blog, bring-

ing the Shuttle project to a close. He was still under the impression that

the mockups would be implemented in due course. They never were. Khaled

and other members of the group felt disenfranchised, and drifted away from

the community. Chris Davis and Michael Heilemann made the switch from

WordPress to the Habari project.

The biggest failure of the Shuttle project wasn’t the designs or implementa-

tion, but the process itself. To avoid getting bogged down with too many opin-

ions, the group closed itself off from the community — which created a new

set of problems. Isolated from the larger community, they lost touch with the

development process. The project’s closed nature limited opportunities for

other enthusiastic designers to step in and move the work forward. For each

person excited to see a spectacular WordPress redesign, there was another

person resentful that a blessed group of designers was working privately on

something the whole community had a stake in.

In one of the final emails on the wp-design mailing list, Matt outlined some

of the things that he learned about design-oriented free software projects:

• Work should not be done in private

• Design by committee doesn’t work, better to break up tasks and let individual

people focus on one section

• Focus on lots of incremental changes, rather than giant redesigns (you end up

in the same place, and probably sooner)

Milestones: The Story of WordPress

116

http://lists.wordpress.org/pipermail/wp-design/2006-April/000721.html
http://lists.wordpress.org/pipermail/wp-design/2006-April/000721.html
http://lists.wordpress.org/pipermail/wp-design/2006-April/000723.html
http://lists.wordpress.org/pipermail/wp-design/2006-April/000730.html
https://web.archive.org/web/20061105004935/http://www.brokenkode.com/archives/shuttle-launched/
http://lists.wordpress.org/pipermail/wp-design/2006-May/000732.html

These tenets influenced the relationship between WordPress design and

development, helping future design projects avoid the difficulties faced by the

Shuttle group.

• Document the process and decisions along the way

• Code concurrently with the designs (and iterate)

• Don’t hype it, expectations get out of control

• Avoid scope creep of features into designs

• Set a deadline and stick to it

Milestones: The Story of WordPress

117

CHAPTER 19

Automattic

It was time to give WordPress.com and Akismet a parent. WordPress, like

many free software projects, started as a script built in a hacker’s spare time.

As the community grew and more people adopted the software, the hacker

realized it could be a business — a for-profit venture, with dedicated employ-

ees and a company to cover costs.

In 2005, there weren’t yet many businesses run alongside free software pro-

jects. Creating a company to house WordPress.com and Akismet would be a

delicate balancing act to satisfy very different constituencies. The business is

responsible to investors and employees, while the community of contributors

has no stake in the business, but a huge stake in the project. Decisions come

under scrutiny from both sides. As founder of the project and the company,

Matt would be pulled in both directions.

What companies based on free software and their foundational projects share

is belief in the power of free, open source software. A WordPress.com com-

pany would offer a service and generate income while keeping the core soft-

ware free and accessible. Making money would be but one aim, alongside

popularizing free software for the benefit of society. It seemed to make sense

for a business to spring up alongside WordPress, one that shared its commit-

ment to the open web and to democratizing publishing, and that would help

sustain the WordPress project.

In December 2005, as the memory of WordPress Inc. faded, Automattic

launched as a new home for WordPress.com and Akismet.

Automattic marked a new, but challenging, beginning for its employees, who

had to balance the free project’s aims with the company’s commercial goals.

118

http://ma.tt/2005/12/automattic-beta/
http://ma.tt/2005/12/automattic-beta/

It’s a balance that has affected both WordPress and Automattic throughout

their close histories. The business generates income and provides contribu-

tors and support to the project, while the project creates the software that

is the foundation of the business. The business needs to grow in a non-

destructive, sustainable way, allowing the project to grow, mature, and

attract a diverse group of contributors.

The company launched with four employees: Donncha Ó Caiomh, the origi-

nal developer of WordPress MU, worked on WordPress.com’s infrastructure

with Ryan Boren, Matt, and Andy Skelton. They left their jobs and put their

faith in WordPress — that it could grow beyond its roots as a small project

into a platform that could sustain a blogging business.

In January 2006, Toni Schneider joined as CEO (or “adult supervision” for

the still only 19-year-old Matt). Toni was a developer and later CEO of Odd-

Post, a startup that was acquired by Yahoo! and became the basis of Yahoo!

mail. After setting up the Yahoo! Developer Network, Toni joined Automattic

for a new challenge.

Toni had his first encounter with the power of open source while working

on OddPost. OddPost didn’t have a spam filter and needed one, and an open

source project provided the solution. Paul Graham had introduced his idea

of Bayesian spam filtering; he open-sourced the idea, and Toni’s team imple-

mented it at OddPost. “It just showed me that this is a really powerful model,”

he says.

He was attracted to Automattic by the challenges of building a product

around free software. WordPress already had brand recognition, but no one

was yet making money from it. In a 2006 interview he said:

WordPress is an interesting new challenge because it’s not like most

startups, where the world still hasn’t heard of you. WordPress is way past

that stage. On the other hand, there is no business yet. Until Automat-

tic came along, there was nobody working for it. It was all volunteers. So

“

Milestones: The Story of WordPress

119

http://www.paulgraham.com/spam.html
http://archive.wordpress.org/interviews/2013_07_27_Schneider.html#L28
http://money.cnn.com/2006/04/18/magazines/business2/startuptype/index.htm

Other aspects of the project attracted Toni: the product wasn’t a central, pro-

prietary service, it wasn’t owned solely by anyone, but by all of the people

involved, and it gave users a say and a stake in a way other hosted services

didn’t — anyone can set up a WordPress blog. Unlike a service like Gmail or

Facebook, WordPress is something you make your own. The idea of a new

kind of company with a new kind of influence was too much to ignore.

Automattic brought together free software development experience with

Toni’s business experience to build a company organized around three key

principles: a distributed workforce, a rapid-release development model, and

a user-centric focus. All ultimately trace their roots to principles of open

source development that still underpin Automattic today.

A distributed workforce seemed like the natural model. Contributors to a free

software project come from all over the world, and collaborate online to build

tools that suit their needs. Automattic’s first four employees came from four

different locations, and the company remains distributed, enabling it to hire

people from all over the world based on their skills, not their location — a

global talent pool.

Toni recalls how, in Automattic’s early days, people expected its commitment

to a fully remote workforce to break down. It goes against traditional business

wisdom, which keeps employees supervised, in one place, and focused on

hours worked instead of output. The first few employees were experienced at

working in a distributed environment; new employees who found it difficult

didn’t last. Automattic responded by refining its hiring methods, developing

a hiring process in which potential employees do a trial, working on real pro-

jects in the distributed environment, to see if the company is the right fit for

them.

taking that product momentum and somehow turning that into a busi-

ness will be really interesting.

Milestones: The Story of WordPress

120

http://archive.wordpress.org/interviews/2013_07_27_Schneider.html#L16

A rapid release model, in which developers constantly push small releases

straight to the user, lets Automattic iterate quickly and improve constantly.

The company eschews the traditional “waterfall model,” in which develop-

ment follows a strict sequence involving specifications, design, construction,

integration, testing, debugging, installation, and maintenance. At Automat-

tic, developers break down features into small components, create patches

for each component, and launch code incrementally — and directly to blog-

gers. There are few roadblocks, and developers and designers push enhance-

ments and new products to millions of users within a few seconds. Con-

tinuous deployment means that by May 2010, Automattic had over 25,000

releases, an average of 16 a day. Rather than optimizing for perfection, the

process optimizes for speed.

A distributed workforce and rapid releases work for Automattic because the

people who build its products have a direct connection to their customers,

doing away with as many levels of mediation as possible. Every person in the

company starts their Automattic career with three weeks of direct customer

support, with one more week every year, giving each employee the opportu-

nity to see how users interact with the products — and where the weak spots

are. Developers stay happy because they can constantly push new ideas right

to customers. Customers stay happy because they’re constantly getting new

toys to play with, and the chance to share feedback that refines the product.

Following Automattic’s launch, the bulk of new hires came from the free

software project. Seven of the first ten employees were from the WordPress

community, all with an intimate knowledge of developing and using the soft-

ware. Automattic had a wealth of developers who were not just experienced,

but passionate and committed, evidenced by the considerable volunteer time

they’d put into it.

From the start, Automattic was both exciting and contentious. It wasn’t obvi-

ous where Automattic’s boundaries ended and the WordPress project’s

began. Matt and Ryan, the two developers who led WordPress, were both

employees of Automattic, which appeared to make it an Automattic project. It

Milestones: The Story of WordPress

121

https://en.wikipedia.org/wiki/Waterfall_model
http://toni.org/2010/05/19/in-praise-of-continuous-deployment-the-wordpress-com-story/
http://toni.org/2010/05/19/in-praise-of-continuous-deployment-the-wordpress-com-story/

was unclear even on the original Automattic “About” page, which lists Word-

Press as an Automattic project.

The confusion was compounded by the name of Automattic’s blog network:

WordPress.com. “We gave the company this advantage of being able to call

its service WordPress.com,” says Toni. “It’s been a curse and a blessing.”

The mainstream tech press frequently describes Automattic as the “maker

of WordPress,” which does a disservice to the hundreds of contributors who

aren’t employed by Automattic. The WordPress.org support forums are lit-

tered with questions about WordPress.com from bloggers who don’t under-

stand the difference.

On the other hand, Automattic puts millions of dollars into growing the

WordPress brand, and a 2013 survey by WordPress hosting company WP

Engine found that 30% of people had heard of WordPress. The name recog-

nition increases the number of people opting for self-hosted WordPress sites

rather than using Blogger, Tumblr, or other CMSs. There are many more peo-

ple whose first exposure to WordPress is via WordPress.com, and a number

of those eventually move to the self-hosted software. It’s unlikely that the free

software project would have had the money or the drive to do such extensive

branding.

As for-profit entity, Automattic experimented with different ways to make

money. Creating an enterprise version was considered, then scrapped — since

WordPress itself can run a blogging network like WordPress.com, producing

an enterprise version didn’t make sense. Instead, it offered support services

to enterprise-level clients. Prominent sites such as CNET, About.com, and

the New York Times were using WordPress, and other sites, such as Gigaom

and TechCrunch, shifted to WordPress.com. Automattic initially courted

these sites as a marketing strategy, thinking that nothing says “WordPress

can scale” better than hosting big, high-traffic sites. Toni approached big

websites to offer to host them on WordPress.com; early takers included

Scobleizer and the Second Life blog.

Automattic tested different subscription levels. In 2006, they launched the

Milestones: The Story of WordPress

122

https://web.archive.org/web/20051224051341/http://www.automattic.com/projects/
http://archive.wordpress.org/interviews/2013_07_27_Schneider.html#L40
http://mashable.com/2014/04/09/automattic-acquires-longreads/
http://mashable.com/2014/04/09/automattic-acquires-longreads/
http://toni.org/2006/06/26/automattic-support-network/

Automattic Support Network at $5,000 per year, later adding enterprise-

level hosting via WordPress.com VIP at $250 per month.

Just because software is free doesn’t mean that services around that software

have to be inexpensive. Companies are prepared to pay enterprise prices to

ensure that their websites scale and stay online. Automattic, and other com-

panies in the WordPress ecosystem, had to develop confidence, build up their

pricing structure, and charge what they were worth.

Milestones: The Story of WordPress

123

http://toni.org/2006/06/26/automattic-support-network/
http://ma.tt/2006/09/wordpresscom-vip/

CHAPTER 20

Growing Pains

In January 2006, a Google survey found that WordPress powered 0.8% of

websites. The project was growing, and with greater adoption came greater

tension. Growing pains are common for organizations — especially in demo-

cratic communities where everyone has a voice — and WordPress was not

immune.

WordPress contributors come from a range of backgrounds, and include for-

mally taught developers, self-taught hackers, designers, people doing sup-

port and writing documentation, business owners, and bloggers. Contributor

diversity is one of WordPress’ strengths, but wrangling so many viewpoints

brings its own challenges. Disagreements coalesce around three broad issues:

approaches to development and community building, styles of communica-

tion, and opinions on who the software is for (users or developers, for exam-

ple, or users and business owners).

The Shuttle project was but one example. While the participants communi-

cated privately, hoping to streamline and expedite the project, other Word-

Press contributors were concerned that work was going on behind closed

doors and felt cut out of an important part of WordPress’ evolution. Co-

founder Mike Little was one of those vexed by the process.

In June 2005, the Shuttle project updated the write screen, introducing a new

“pods” functionality that let users collapse parts of the screen. The changes

were discussed only on the closed wp-design mailing list, precipitating a long

discussion on wp-hackers about openness. While Matt saw the commit as a

starting point for discussion, others perceived it as a wholesale change made

without communication. Many in the community felt that discussion should

happen ahead of the commit, and that the community should have been

124

http://ma.tt/2006/01/markup-survey/
http://ma.tt/2006/01/markup-survey/
https://core.trac.wordpress.org/changeset/2639
http://lists.wordpress.org/pipermail/wp-hackers/2005-June/001403.html
http://lists.wordpress.org/pipermail/wp-hackers/2005-June/001403.html

informed about Shuttle’s work. That was, after all, how free software projects

should function.

IRC discussions focused on Matt and Ryan as bottlenecks; only they had

commit access, so all issues had to go through them. After lengthy conver-

sations about how to make the process more open, Mark Jaquith and Sean

Evans (morydd) became “bug gardeners,” getting maximum trac privileges.

Inline documentation also generated heated debate. Many developers find

exploring code a valuable learning tool, and there was strong community sup-

port for improving WordPress’ inline documentation. However, when Rich

Bowen (drbacchus) proposed documenting WordPress’ functions, Carthik

responded that inline documentation was frowned upon and would lead to

bloat. Referring to a thread from May 2005, he offered:

Rich’s initial proposal was the first volley in a lengthy back-and-forth about

the best way to generate documentation from the code and the best inline

documentation format. Matt argued that documentation shouldn’t be auto-

generated, pointing to the Codex as the best place for documentation, and the

conversation ultimately went nowhere despite ongoing community support.

Tickets went ignored, and Owen Winkler created his own developer function

reference:

Commenting is tricky. Some “well-commented” code I’ve seen had a

bunch of lines of repetitive filler that “documented” what you could eas-

ily see by just looking at the code itself and doubled the size of the pro-

gram. APIs should be documented religiously, but I think spending a ton

of time on redundant comments for code only a few core hackers will

ever look at will bloat the codebase and waste everyone’s time. I also

believe that well-written code usually doesn’t need comments unless it’s

doing some sort of voodoo or workaround.

“

Milestones: The Story of WordPress

125

http://codex.wordpress.org/IRC_Meetups/2005/June/June29RawLog
https://profiles.wordpress.org/morydd
https://profiles.wordpress.org/drbacchus
http://lists.wordpress.org/pipermail/wp-hackers/2006-February/004921.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-February/004926.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-February/004926.html
http://lists.wordpress.org/pipermail/wp-hackers/2005-May/001114.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-February/005088.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-March/005481.html
http://core.trac.wordpress.org/ticket/2473
http://lists.wordpress.org/pipermail/wp-hackers/2006-April/005534.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-April/005534.html

Contributors from traditional coding backgrounds also butted heads with

the self-taught hackers with whom WordPress is so closely identified, again

over documentation. Many original WordPress developers were entirely self-

taught. Michel’s get-it-on-the-screen approach filtered through the project,

sometimes at the expense of coding practices that more experienced develop-

ers took for granted — like inline documentation, which some hackers con-

sidered superfluous to writing code, even bloat. It would take some time

before it became standard practice in the WordPress community.

Problems weren’t limited to inline documentation. Mark Riley, one of Word-

Press’ longstanding forum moderators, pointed out in 2006 the many ways

that the WordPress Codex was failing users. The Codex recommended that

users hide which version of WordPress they were running — but the code

itself contained a comment asking users to leave the information visible.

Instructions were often confusing to less-technical WordPress users; a sec-

Milestones: The Story of WordPress

126

http://milestones.pressbooks.com/files/2015/11/winkler_fn_ref.jpg
http://milestones.pressbooks.com/files/2015/11/winkler_fn_ref.jpg
http://lists.wordpress.org/pipermail/wp-forums/2006-March/001530.html
http://codex.wordpress.org/index.php?title=Hardening_WordPress&oldid=16988

tion on permissions stated that “All files should be owned by your user

account, and should be writable by you. Any file that needs write access from

WordPress should be group-owned by the user account used by the web-

server,” assuming that all users would know how to configure this. Because it

was so easy for non-technical users to download and install WordPress, Mark

argued, documentation should be written in clear, simple language.

Release dates were another fault line. Almost every release cycle, Mark asked

for the release date in advance so that he could ensure the support forums

were properly staffed to handle the barrage of questions. Again and again, a

release would arrive and surprise him. “All I am trying — and yet again com-

pletely failing — to ask,” he pleads “is that IF you want support for the prod-

uct it would nice to at least let the forums know. You guys just don’t see it do

you? You really don’t have a clue.”

Each of these issues highlights the tension between developers and non-

developers on the project. WordPress encouraged people from all back-

grounds to get involved, but developers weren’t always interested in sup-

porting them. Many developers in the project were self taught, with the

free software do-it-yourself attitude — if they could teach themselves PHP,

why couldn’t others? Mark Riley’s mounting frustrations are clear on the

wp-hackers mailing list, as he repeatedly posts questions from the support

forums and requests help from developers.

These challenges are unsurprising. When so many passionate people come

together to work on a project, disagreement is inevitable. A free software

project is a melting pot of people with different ideas, opinions, and back-

grounds.

Conventional wisdom says that this approach to creating software shouldn’t

work. But somehow it does. Despite the challenges, contributors stick

around, new contributors constantly join, and the project grows. In the end,

what matters isn’t the specifics of any one conflict, but how the community

resolves them and moves on.

Milestones: The Story of WordPress

127

http://lists.wordpress.org/pipermail/wp-hackers/2006-March/005310.html

CHAPTER 21

WordCamp 2006

The WordPress community has a long tradition of getting together to have

fun and work on design and development in person. As early as June 2004,

contributors were meeting in San Francisco to socialize and hold “upgrade

parties.” (Before the days of the one-click upgrade, users had to upgrade their

sites individually using FTP; contributors gathered to help people upgrade, or

to migrate from other platforms to WordPress.) A dedicated WordPress con-

ference was the next step.

Matt, along with Tantek Çelik, had helped organize an informal technology

conference called BarCamp, a series of open, workshop-style events where

attendees helped create the schedule. In July 2006, Matt announced that he

would host a BarCamp-style event called “WordCamp” later that summer in

San Francisco. “BarCamp-style” is a code phrase for ‘last minute,’” he joked.

The event — which he announced without a venue or schedule — would be on

August 5th. More than 500 people from all over the world registered: Don-

ncha flew in from Ireland, and Mark Riley from the UK. When WordCamp

did get a venue, it was the Swedish American Hall, a Market Street house that

served as headquarters for the Swedish Society of San Francsico.

WordCamp 2006’s schedule reflects the project’s concerns and its contribu-

tors’ passions. Mark Riley gave the first-ever workshop on getting involved

with the WordPress community, now a staple talk at WordCamps. Andy Skel-

ton presented on the widgets feature that he was working on for Word-

Press.com. Donncha spoke about WPMU, and Mark Jaquith explored Word-

Press as a CMS, one of the most-requested sessions. There were presenta-

tions about blogging and podcasting, and about journalism and monetizing.

128

https://wordpress.org/news/2004/06/meetup-location/
https://wordpress.org/news/2005/02/upgrade-party/
https://wordpress.org/news/2005/02/upgrade-party/
http://ma.tt/2006/07/wordcamp/
http://ma.tt/2006/07/wordcamp/
http://2006.wordcamp.org/schedule/
http://markjaquith.com/wordcamp/wordpress-versatility/
http://markjaquith.com/wordcamp/wordpress-versatility/
http://markjaquith.wordpress.com/2006/08/30/wordcamp-thoughts-late-to-the-game/

The Hrst WordCamp. (cc license Scott Beale (Laughing Squid))

WordCamp San Francisco 2006 also saw Matt’s inaugural “State of the

Word” presentation, in which he focused on keeping the software simple,

with streamlined installation and user-friendy theme and admin pages. He

invited more people to contribute to documentation and support, highlight-

ing Mark Riley’s work, and discussed future updates in a Q&A afterwards.

This WordPress year-in-review and “coming soon” talk has been a feature of

every WordCamp San Francisco since (and in 2015, of the first-ever Word-

Camp US in Philadelphia, Pennsylvania).

Milestones: The Story of WordPress

129

http://milestones.pressbooks.com/files/2015/11/wcsf_2006.jpg
http://milestones.pressbooks.com/files/2015/11/wcsf_2006.jpg
http://laughingsquid.com
http://dan.hersam.com/2006/08/05/wordcamp-notes/

Matt giving his State of the Word presentation. (cc license Scott Beale (Laughing Squid))

The event, despite the short lead time, was a success and the first of what

would be a global conference series. WordCamp returned to the Swedish

American Hall in 2007, to be followed by WordCamp Beijing in September

2007 and additional WordCamps in Israel, Argentina, and Melbourne, Aus-

tralia.

Mirroring WordPress itself, these events are organized and supported by vol-

unteers. There was no formal WordCamp program — if someone wanted to

organize an event, they did it. Like their BarCamp ancestors, they remained

informal and user-led. It wasn’t until later, when the project had grown and

the number of WordCamps across the world exploded, that WordCamps

started to get some structure.

Milestones: The Story of WordPress

130

http://milestones.pressbooks.com/files/2015/11/wcsf_2006_sotw_matt.jpg
http://milestones.pressbooks.com/files/2015/11/wcsf_2006_sotw_matt.jpg
http://laughingsquid.com

CHAPTER 22

Speeding Up the Release
Cycle

Shuttle wasn’t the only piece of the project that dragged. More than a year

elapsed between Shuttle-inspired WordPress 2.0 and the next version, Word-

Press 2.1. Matt describes the period as “a dark time in WordPress develop-

ment history, a lost year.” It was time for a streamlined development process.

WordPress’ approach to new versions gives each major release two numbers:

1.5, 2.0, 2.9, 3.4, 4.0. Patch releases get an additional decimal point (2.0.1, for

example). Many other software projects, like Drupal, give each major release

a round number; over a period of years, the version number climbs. Decimal-

ization avoids that, althought it took WordPress a while to settle on regular

numbering.

The release cycle was sporadic in the early days. Version numbers jumped

haphazardly. Some releases arrived in a few months, while 265 days went by

between 1.2 and 1.5 — the codebase had so many changes that WordPress

skipped the interim version numbers, going straight from 1.2 to 1.5. Version

1.6 was inflated to 2.0, because of the number of features in it and because

314 days had elapsed between the releases. But the delay between 2.0

(released December 31, 2005) and 2.1 (released January 22, 2007) was the

longest to date.

The mailing list was active, and more developers than ever were attracted to

the project. WordPress had been downloaded 1.5 million times. But despite

active conversation, no one was shipping code. The release post for Word-

Press 2.1, with its plethora of new features, demonstrated the constant desire

131

http://ma.tt/2010/11/one-point-oh/
http://wordpress.org/news/2004/12/version-skip/
http://wordpress.org/news/2007/01/ella-21/
http://wordpress.org/news/2007/01/ella-21/

to slip in one more feature, rather than waiting to include it in the next

release. Feature-packed releases brought myriad improvements, but at a

cost: delay.

The delay frustrated contributors because of long release cycles, and because

commit access was still restricted to Matt and Ryan. Each free software pro-

ject approaches commit access differently, and WordPress has a mixture of

people who support a controlled, Linux-style commit policy, and those favor-

ing open access. For many developers, the restrictive commit policy was

partly to blame for delays.

Ryan argued that a defined funnel avoided situations in which “bridge-

burning arguments happen in the repository rather than in ticket comments.”

When committers are limited, approach and implementation discussions

take place before any code touches the main repository, where it’s difficult to

remove. An open commit policy makes development more agile, but “loose

control leads to spaghetti code and flame wars over inconsequential issues,”

claimed Douglas Daulton, a supporter of the funnel, in a wp-hackers post.

In the context of these discussions, Ryan codified a commit process that

remains part of development today:

• Every commit must be accompanied by a ticket.

• Before being committed, the code is reviewed by at least two people —

one for a code review and the other for an integration/architecture

review.

• These reviews are carried out by trusted contributors.

By March, 2006, incremental, positive changes were evident. Ryan proposed

a focused #wordpress-dev IRC channel as a complement to the #wordpress

channel, which had become a place for general chatter and support. Mark

Jaquith pointed to the Bug Gardening scheme’s success in opening trac up;

extending privileges to “bug gardeners” responsible for triaging tickets dis-

tributed the workload and led to “a whole slew of people who are

autonomously fixing bugs, submitting patches, and having them committed.”

Milestones: The Story of WordPress

132

http://lists.wordpress.org/pipermail/wp-hackers/2006-March/005192.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-March/005195.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-March/005190.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-March/005190.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-March/005189.html

The trac mailing list was another positive change, transforming trac from

simple bug-tracking, to a place for focused discussion and curtailing wp-

hackers’ tendency to wander down conversational rabbit holes.

As work on WordPress 2.1 went on, Ryan suggested getting WordPress 2.0

into Debian stable, the official version of the Debian open-source operating

system. WordPress was already in the testing and unstable distributions,

which each contain packages lined up for inclusion in the stable version. To

be included in Debian stable, WordPress 2.0 would need to be maintained

for three to five years, including backporting security issues to ensure that all

previous versions remained stable. Mark Jaquith took on the task of main-

taining the WordPress 2.0 branch, and the project committed to maintaining

it for three years, until 2010.

Shortly after he began leading the legacy branch, Mark Jaquith received com-

mit access. Mark had been involved with WordPress since 2004, coming to

the project from Movable Type. In his two years of work he’d made many

contributions, including the successful bug gardening scheme. It was a sign

that the funnel was starting to broaden, and the beginning of a period when

— slowly but surely — more committers were added.

Commit access was offered sparingly; it wasn’t given out based on coding

expertise or how much work a developer had done. Adding a new committer

meant trusting them to uphold the project’s user-first ethos. “It’s not just that

you’ve shown a commitment to contributing,” says Peter Westwood (westi),

“but you also have shown an understanding of the ethos of the community,

their shared beliefs, and their philosophies.”

Adding another committer didn’t speed up the development cycle, so the

team took a more serious look at the WordPress development process — or

lack thereof. A discussion on moving to a 120-day release cycle started on wp-

hackers, and Matt shared his thoughts on what a release timeline should look

like:

Milestones: The Story of WordPress

133

http://lists.wordpress.org/pipermail/wp-hackers/2006-October/008871.html
http://lists.wordpress.org/pipermail/wp-hackers/2006-October/008871.html
https://core.trac.wordpress.org/changeset/4270
https://core.trac.wordpress.org/changeset/4270
http://archive.wordpress.org/interviews/2013_07_02_Westwood.html#L122
http://profiles.wordpress.org/westi
http://lists.wordpress.org/pipermail/wp-hackers/2006-October/008907.html

The community response was positive. A 120-day structure provided a con-

crete deadline, and the shorter release cycles meant that a feature need not

hold up a release, as the next version would, in theory, arrive predictably. (In

practice, this often depended on what the feature was, who had spearheaded

it, and how far along it was). WordPress 2.1 was the first version to ship with

a concrete release date for the next version: April 23 for WordPress 2.2.

Publicizing release dates gave the project firm deadlines, which came to be

seen as a promise — a release date promise that users could plan around. The

project didn’t quite make the next deadline, but was only a few weeks off;

WordPress 2.2 released on May 16, 2007.

• 2 months of crazy fun wild development where anything goes.

• 1 month of polishing things a little bit, and performance.

• Feature freeze.

• 1 month of testing, with a public beta release at the beginning.

Milestones: The Story of WordPress

134

http://wordpress.org/news/2007/01/ella-21/
http://wordpress.org/news/2007/05/wordpress-22/

CHAPTER 23

Trademarks

In March 2006, Automattic filed to register the WordPress trademark, and

the competing interests of WordPress (the open-source project) and Word-

Press.com (the commercial enterprise) again clashed.

Trademark registrations can be slow processes; a registrant has to demon-

strate that they’re proactively protecting that trademark. Toni Schneider

spent many of his early years at Automattic doing just that. It was a challenge,

he says, to figure out “how can we make this a very open brand that lots of

people can participate in but it doesn’t just turn into some mess that doesn’t

mean anything in the marketplace because everybody just uses it in differ-

ent ways.” The large ecosystem around WordPress can make it difficult for

users to know who they’re dealing with: the official project? Automattic? A

third-party developer or consultant? Avoiding trademark dilution was criti-

cal to ensure clarity.

Any trademark can, over time, become generic: the meaning of the name

morphs from identifying a specific thing to an entire class. The word

“aspirin,” which is used as a general term for a class of medications in the

United States, is actually a registered trademark of Bayer in 80 other coun-

tries. Office machinery company Xerox once ran an advertising campaign to

dissuade people from using “xerox” as a verb. The onus is on the trademark

owner to prevent their trademark from becoming generic.

The first meaningful attempt to protect the WordPress trademark sought

to establish control over the domain. To successfully register a trademark,

the owner has to enforce the trademark consistently. For WordPress this

meant a domain policy — a ban on using WordPress in top level domains for

any sites other than WordPress.org and WordPress.com. Just before filing,

135

http://www.trademarks411.com/marks/78826734
http://archive.wordpress.org/interviews/2013_07_27_Schneider.html#L42
http://archive.wordpress.org/interviews/2013_07_27_Schneider.html#L42

WordPress.org created a domain policy requesting that community members

not use “WordPress” in their domains.

Once the application was submitted, Automattic began enforcing the domain

guideline to protect the WordPress trademark. Many websites used Word-

Press in their domain names — community websites, businesses selling

WordPress products and services, WordPress fans, and more. There was con-

fusion about what people could and couldn’t do. Could community members

use WordPress in the title of their website? Was it okay in subdomains?

In a comment thread on Lorelle VanFossen’s popular blog, community mem-

bers wonder whether they can use the label “on WordPress” (as in “Lorelle

on WordPress”) on their blogs. After lengthy discussion in the comments,

Lorelle updated her post to add:

The new policy influenced everything from community sites to businesses.

International WordPress groups that had set up their own websites — word-

press.dk, wordpress.fr, wordpress.pt — were particularly affected. These

community gathering points often had translated documentation, links for

localized versions of the software, and support forums to make WordPress

fully available to non-English speakers. To these groups, the domain policy

felt like a top-down order rather than a community decision. For others who

believed that the WordPress name and logo belonged to the project itself,

domain restrictions seemed counter to the WordPress ethos.

Also affected was wordpress-arena.com, a site running a WordPress theme

contest. After Alex King’s 2005 CSS competition, theme competitions became

After many discussions with Matt and the WordPress Community and

staff, it is official. It is a violation of trademark to use WordPress in your

site’s domain name. You may use it in the title and in blog posts, how-

ever, please note that using WP or WordPress in the site title implies the

site specializes in WordPress content. Don’t disappoint.

“

Milestones: The Story of WordPress

136

https://web.archive.org/web/20060221154915/http://wordpress.org/about/domains/
https://web.archive.org/web/20060221154915/http://wordpress.org/about/domains/
http://lorelle.wordpress.com/2006/10/26/using-wordpress-in-your-domain-name-dont/
https://web.archive.org/web/20060422014104/http://www.arenawp.com/?p=10
https://web.archive.org/web/20060422014104/http://www.arenawp.com/?p=10

popular community events. The contests had clear community benefits,

increasing the pool of themes, allowing developers to show off their skills,

and pushing the boundaries of theme development. Although he enforced the

domain guideline, Matt left the site a message of support, also noting that

“Unfortunately for every cool usage (like this competition, potentially) there

are a dozen scammers and spammers misusing WordPress, selling spamming

scripts or copies of WP itself.”

Six months later, official cease and desist letters went out to sites still using

WordPress in their domains. Attention centered on two commercial websites,

wordpressvideos.com, run by Brandon Hong, and Sherman Hu’s word-

presstutorials.com. Both were registered prior to WordPress’ trademark pol-

icy, and presented a unique trademarking challenge. The main test of trade-

mark violation is “likelihood of confusion.” International community sites

could easily be confused for the main WordPress project, as could sites selling

plugins, themes, and other CMSs, but tutorials and books present a gray

area. Similar sites in the Adobe community (photoshoptutorials.ws and pho-

toshopessentials.com, for example) are not owned by Adobe, but are not seen

as trademark violations.

Sherman Hu and Brandon Hong both received letters. As is often the case in

the blogging world, a blogger wrote about it: in his post, Andy Beard remarks

on Automattic’s tardiness in registering the trademark and preventing others

from using it. He also defends the two sites being singled out. Both provided

WordPress services and cultivated their own communities; they weren’t, he

felt, the “spammy products” that Matt thought they were. Besides, just a year

earlier, there had been a link farm on WordPress.org.

Others jumped to defend the two sites. Even those who supported Automat-

tic’s trademark position bristled when Matt branded the two sites as “snake

oil,” and Hu’s customers and friends flocked to Beard’s post to voice their

support. Other prominent internet marketers, including copyblogger’s Brian

Clark, took issue with the fact that long sales letters were branded spammy

and scammy.

Milestones: The Story of WordPress

137

https://web.archive.org/web/20060402224841/http://wordpressvideos.com/
https://web.archive.org/web/20060705071350/http://www.wordpresstutorials.com/
https://web.archive.org/web/20060705071350/http://www.wordpresstutorials.com/
https://web.archive.org/web/20100217043501/http://andybeard.eu/112/wordpress-trademark-scammers.html
http://www.copyblogger.com/does-your-copy-look-spammy/
http://www.copyblogger.com/does-your-copy-look-spammy/

Eventually, the sites came to an agreement with Automattic. Sherman agreed

to add a trademark symbol beside every use of the word WordPress, and

Hong’s WordPress Tutorials site came out with a redesign. Sherman eventu-

ally shut WordPress Videos down in 2008, moving on to focus on his consult-

ing business.

Since then, Automattic has consistently enforced the WordPress trademark.

While to many it appears that Automattic is motivated by commercial bene-

fit, its involvement brings advantages as well; as commercial entity, it’s able

to put resources into enforcement that the free software project doesn’t have.

Still, it would be several more years before all the WordPress trademark

issues were resolved.

Milestones: The Story of WordPress

138

https://web.archive.org/web/20061130162903/http://www.wordpresstutorials.com/?

CHAPTER 24

Habari

Three years in, the project included developers, support forum volunteers,

documentarians, and others helping out. Many had been around since the

early days, and while the project and software had grown and changed, some

felt that the governance structure had not. A free software project can be run

in many different ways. WordPress has always had a Benevolent Dictator for

Life (BDFL) structure: the final decision often rested with Matt, even if it

was Ryan Boren who made and implemented most of the technical decisions.

Some contributors, however, felt that the project could benefit from a com-

mittee structure, with a team of people driving the project’s direction and

decision making. Others were unhappy with how Matt led the project, and

left. The first major fork of WordPress didn’t involve software; it was within

the community.

Some of the unhappy contributors met in September 2006, at the Ohio Linux

Fest in Columbus. They had lunch together at a Buca di Beppo. Among the

diners were four WordPress developers — Owen Winkler (ringmaster), Rich

Bowen (drbacchus), Scott Merrill (Skippy), and Chris Davis (chrisjdavis).

During lunch they talked about their grievances. The same story came up

again and again — patches were rejected because they didn’t fit the project’s

vision. The conversation kept returning to the possibility of setting up a new

free-and-open-source (FOSS) project. By the time the meal ended, the devel-

opers had decided to stop talking and act: they would create a new blogging

tool. A few weeks later at ApacheCon, they chose a name: Habari, which is

Swahili for “What’s up?” or “What’s the news?” They created a governance

structure and development ethos for the project, and started work in earnest.

Habari launched in January 2007, and many of its founding principles are

139

http://skippy.net/wordpress-less
http://profiles.wordpress.org/ringmaster
http://profiles.wordpress.org/drbacchus
http://profiles.wordpress.org/skippy
http://profiles.wordpress.org/chrisjdavis
http://matsu.wordpress.com/2007/01/08/witnessing-the-birth-of-an-open-source-project-habari/

in direct opposition to those of the WordPress project. The Habari Motiva-

tions page addresses the issues that the founding developers objected to in

the WordPress project — and explains their different approach to running

a free software project. It also highlights some problems that were afoot in

the WordPress project three years after its launch. Every free software pro-

ject — indeed every group or community — has its problems, especially as

it becomes established. Tensions that were ignored during the initial heat of

enthusiasm become entrenched, and as enthusiasm fades, those tensions sur-

face.

Governance style was one major issue. Many weren’t happy with the BDFL

model, despite its prevalence in free software projects, from Linus Torvalds

of Linux to Guido van Rossum of Python. A BDFL typically has final say about

the project’s direction and vision, but as a project grows, there are many peo-

ple who wield influence and make decisions.

Rich Bowen, one of the developers who was dissatisfied with how WordPress

was run, came from the Apache project. Apache has a committee model. The

committee comprises developers and non-developers, all of whom have a say

in how the project runs. Unlike WordPress, which requires that commits be

approved by the committer and/or the patch reviewer, commits in Apache

require consensus. Habari launched with a committee structure, much like

Apache.

Designer Michael Heilemann was one person enticed by Habari. He’d

designed the Kubrick theme and was looking for a new challenge after the

Shuttle project failed before implementation.

Michael redesigned the Habari interface — which he says was both a good

and bad experience. He enjoyed designing and implementing it, less so get-

ting it approved. Because of Habari’s committee structure, a lot of time

was spent discussing the new admin interface. People with no design back-

ground weighed in with opinions and everyone received equal weight. This

left Michael feeling like he couldn’t get his work done and he ended up

Milestones: The Story of WordPress

140

https://web.archive.org/web/20070111191036/http://code.google.com/p/habari/wiki/Motivations
https://web.archive.org/web/20070111191036/http://code.google.com/p/habari/wiki/Motivations
http://web.archive.org/web/20070117005952/http://binarybonsai.com/archives/2007/01/07/time-to-habari/
http://archive.wordpress.org/interviews/2013_11_06_Heilemann.html#L84

leaving Habari. When asked whether he prefers a BDFL or an Apache-style

model, he says:

The Habari Monolith interface, designed by Michael Heilemann.

Commit access was another flash point. In the Apache project, a clear path

existed to gain commit access to the repository. That wasn’t the case in

early-2006 WordPress. Matt and Ryan acted as a funnel through which all

code would be reviewed. More committers were eventually added, but it was

It’s easy to end up in very long discussions if everybody has equal foot-

ing. And that makes for a great democracy, but it’s also very hippie,

60s, everybody gets to sit around and share their opinion, but that’s not

always something that’s really worthwhile. You don’t actually, necessar-

ily, get a better product out of it. And so often you need somebody with

vision, or at least somebody with a point of view with opinion to weigh

in.

“

Milestones: The Story of WordPress

141

http://archive.wordpress.org/interviews/2013_11_06_Heilemann.html#L88
http://milestones.pressbooks.com/files/2015/11/habari-monolith.png
http://milestones.pressbooks.com/files/2015/11/habari-monolith.png

a slow process and one that led to frustration, particularly among prolific

contributors.

Coming from Apache, Rich Bowen brought a different perspective — which

he shared with other dissatisfied developers. For Rich, WordPress didn’t con-

stitute a true meritocracy — there was no opportunity for those with ability

to gain power and responsibility. The final decision over who did and didn’t

gain authority lay with the project’s leader — it was entirely up to Matt’s dis-

cretion. When Matt, in a discussion thread, said that WordPress is a meri-

tocracy because commit access is provided to “the best of the best of the best

contributors who prove their worth over time with high-quality code, respon-

siveness to the community, and reliability in crunch times,” Rich pointed out

that because the final decision lies with the BDFL, the community can never

become meritocratic.

At the heart of the discussion was a fundamental disagreement about how a

free software project should be structured. In Homesteading the Noosphere,

Eric Raymond discusses project structures and ownership, looking at how

these emerge over time. WordPress follows Raymond’s outline: the project

had a single owner/maintainer (or rather two — Mike Little and Matt Mullen-

weg). Over time, Matt assumed project leadership. In WordPress’ case, com-

mit access carried with it an implicit level of authority. Those with commit

access are the arbiters of the code that ends up in core. Matt made clear on

a number of occasions that he didn’t “want it to be a status thing,” but it still

became one.

Matt posted to the mailing list in 2005, saying “Committing != community

status. It simply is a way to ensure that all the code that goes into the core

is reviewed before being distributed to the world.” But community members

naturally ascribe more authority and trustworthiness to those with commit

access. It was unclear what it took to become a committer or a lead developer.

Instead, the roles developed organically. For the community, authority nat-

urally followed commit access to the repository, and commit access followed

high-quality code submissions along with an understanding of and commit-

Milestones: The Story of WordPress

142

https://neosmart.net/blog/2007/a-clarification-on-wordpress/comment-page-1/#comment-10985
https://neosmart.net/blog/2007/a-clarification-on-wordpress/comment-page-1/#comment-10985
http://catb.org/esr/writings/homesteading/homesteading/ar01s16.html
http://codex.wordpress.org/IRC_Meetups/2005/June/June29RawLog
http://codex.wordpress.org/IRC_Meetups/2005/June/June29RawLog
http://lists.wordpress.org/pipermail/wp-hackers/2005-June/001417.html

ment to the project ethos. Commit is a symbol of trust; with only two commit-

ters, it appeared that the project leads did not trust others in the community.

This had another consequence: non-code contributions went unacknowl-

edged. Commit access may have been given out sparingly, but authority and

leadership were still achievable in theory by anyone who could write code.

For those who worked hard in support forums, wrote documentation, or pro-

vided translations (among other supporting activities), there was no formal

way to progress, gain status, or be acknowledged. Coders receive props for

code accepted into core, but there was no equivalent system for those who

worked or contributed elsewhere. When there were rumblings of discontent,

it wasn’t just coders who were complaining.

Habari’s approach was radically different. Commit access was achievable

by anyone. The Habari motivations page says “Our contribution model is a

meritocracy. If you contribute code regularly, you will be granted permis-

sion to make contributions directly (commit access).” The project takes this

approach even further — it isn’t just coders who received commit access.

Owen Winkler, one of Habari’s founders, says:

In Habari, commit access is an explicit sign of trust and responsibility. If

you’re building a project in which the two do not go hand-in-hand, keeping

commit access solely as a checking mechanism makes sense. The problem? If

it’s not clear to people within the project what constitutes authority, commit

access becomes one of its few indicators.

WordPress’ focus has always been on users, and maintaining a good experi-

There are some people who are committers, who are part of the primary

management committee in Habari who I would never want to actually

touch the code because they don’t really do development. But we give

them access to it because they’ve demonstrated that they’re part of the

community and they’re actively trying to advance Habari as a project.

“

Milestones: The Story of WordPress

143

https://web.archive.org/web/20070111191036/http://code.google.com/p/habari/wiki/Motivations
http://archive.wordpress.org/interviews/2013_08_20_Winkler.html#L103

ence for them. One of the driving ideas behind Habari, on the other hand,

was to create a tool that taught people about development, development best

practices, and being part of a free software project. Rich Bowen, who did’t

know a lot of PHP, said that he hoped that the new project would teach him

about it. Habari eschewed WordPress’ low barrier to entry in favor of an

approach that would cultivate fewer, but stronger, developers.

Habari was written in PHP 5.1, which gave developers access to PHP Data

Objects. This provided a level of database independence that WordPress

lacked. Habari developers found fault with WordPress for not using the latest

coding practices, while WordPress developers felt that the Habari approach

put users second. As Ryan Boren put it:

In February 2007, when Ryan wrote that comment, PHP 4 was still running

on 88.44% of websites. PHP 5 adoption was slow and many web hosts didn’t

support it. If WordPress had made the switch to PHP 5 it would have sud-

denly become unavailable on a huge number of hosts, breaking users’ sites

around the world.

Screwing users because developers want to play is not cool. It’s a good

way to become irrelevant. A big reason WordPress is so popular is

because it is not infatuated with the latest, greatest developer lust objects

that require users to upgrade their platform.

“

Milestones: The Story of WordPress

144

http://php.net/manual/en/intro.pdo.php
http://php.net/manual/en/intro.pdo.php
http://lists.wordpress.org/pipermail/wp-hackers/2007-February/010881.html

PHP major distribution statistics in February 2007.

Habari’s license choice also signified fundamental differences in FOSS

beliefs. WordPress uses a GPL license, intended to secure the freedoms of

users. Habari, on the other hand, uses the Apache License, a permissive

license that allows developers to use the code in any way — even in a pro-

prietary product. Owen Winkler outlined the reasons why the Habari project

doesn’t use a GPL license:

All these differences ended up being unresolvable, as developers felt increas-

ingly disenfranchised despite slow changes within WordPress. Mark Jaquith,

There’s the idea of developer freedom. If you give the software away you

should be able to give it away with no requirements at all. If you want

to take it and make software that you sell, then go ahead and do that.

Hopefully you won’t. Hopefully you’ll contribute. Or if you do, you’ll con-

tribute what you make back to the community somehow.

“

Milestones: The Story of WordPress

145

http://milestones.pressbooks.com/files/2015/11/php-graph-2007.png
http://milestones.pressbooks.com/files/2015/11/php-graph-2007.png
http://www.apache.org/licenses/LICENSE-2.0
http://archive.wordpress.org/interviews/2013_08_20_Winkler.html#L81

who received commit access while the other developers were quietly working

on Habari, recalls, “I felt like […] Matt was right on the verge of loosening the

reins, it felt like things were really starting to get good and they left. And I

was like oh, if you’d just held on.”

But they didn’t. By the time the reins loosened they had founded their own

project with their own ideals and focus. When there is a critical mass of peo-

ple within a FOSS project who don’t accept its core ethos, there is always the

possibility of creating a fork. This is not, necessarily, a Bad Thing. Rather

than struggling with the constant debates and infighting that comes from a

clash of beliefs, sometimes it is better for two groups to separate. Then each

project can keep a laser-sharp focus on the things that matter to its contribu-

tors, and on the software and project that they want to create.

Chris Davis, Owen Winkler, and Nicole Evans at Ohio Linux Fest 2007 (Image CC license Sean T. Evans)

Milestones: The Story of WordPress

146

http://archive.wordpress.org/interviews/2013_09_12_Jaquith.html#L73
http://www.catb.org/jargon/html/F/forked.html
http://milestones.pressbooks.com/files/2015/11/habari_oh_linux_fest_credit_morydd.jpg
http://milestones.pressbooks.com/files/2015/11/habari_oh_linux_fest_credit_morydd.jpg
http://www.flickr.com/photos/morydd/1463477046/

Part Four

Tags and sponsored themes

Polarize opinions

(Happy cogs do too)

CHAPTER 25

Creating a Folksonomy

In the wake of the exodus to Habari, the project began to evolve. In March

2007, Robin Adrianse (rob1n) became WordPress’ first temporary committer

when he received commit access for three months to help Ryan Boren

address languishing trac tickets.

Also in March, the plugin directory launched. Before the plugin directory,

developers hosted their plugins on their website. The directory gave them

exposure to a huge number of WordPress users. Samuel Wood (Otto42)

recalls how the plugin directory encouraged him to distribute his code. “I was

writing them before, but I didn’t give them to anybody. It encouraged me to

release plugins because I had a place to put them.”

148

https://profiles.wordpress.org/rob1n
http://profiles.wordpress.org/otto42
http://archive.wordpress.org/interviews/2014_06_07_Wood.html#L204

The WordPress Plugin Directory in 2007.

Milestones: The Story of WordPress

149

http://milestones.pressbooks.com/files/2015/11/plugin-directory-2007.jpg
http://milestones.pressbooks.com/files/2015/11/plugin-directory-2007.jpg

WordPress 2.1 had launched in January 2007, after a release cycle of more

than a year. WordPress 2.2 was the first to adopt the new 120-day release

cycle. This goal, which would later become codified as deadlines are not arbi-

trary in WordPress’ philosophy, was an ongoing challenge. It was tested in

WordPress 2.2, which featured a new taxonomy system — the biggest data-

base architecture change to date. Developing in an open source environment

means leaving time for every voice to be heard, waiting for volunteers with

busy lives to get things done, and discussing new features and architectural

changes. It’s a challenge that WordPress would have to address release cycle

after release cycle.

In the early 2000s, the internet abounded with discussions about the best

way to organize information. Content has metadata assigned to it, which can

be used to organize and display information. Traditional web classification

methods imposed a top-down categorization structure. A website created a

category structure and users placed their content in the correct category.

These structures were often rigid, forcing users to shoehorn their content into

something that didn’t necessarily fit. A new method of classification emerged

— tags, a bottom-up classification form in which an index or a cloud can be

generated based on keywords that the creator applies to the content.

Social bookmarking site Del.icio.us was the first to use tags. While Del.icio.us

wasn’t a bookmark management pioneer, its tagging system set it apart.

Users tag the links they save, and the tags are then used to group together

links in a user’s own collection and across the entire social network. Visiting

the link http://delicious.com/tag/php displays all links tagged PHP.

The classification system in which users classify content themselves, creating

mass tagging networks, became known as a folksonomy.

In 2005, Technorati, the blog search engine, launched its own tagging sys-

tem. It enabled users to run a tag search across major platforms such as

Blogger and Typepad, CMSs like Drupal, and other services such as Flickr,

Del.icio.us, and Socialtext.

Milestones: The Story of WordPress

150

https://wordpress.org/about/philosophy/
https://delicious.com/
https://en.wikipedia.org/wiki/Folksonomy
http://www.sifry.com/alerts/archives/000270.html
http://www.sifry.com/alerts/archives/000270.html

WordPress lagged behind, and there was pressure from both the free soft-

ware and WordPress.com communities to add tags to the platform. Word-

Press’ native classification form is hierarchical, top-down categories. To

interact with WordPress, Technorati picked up the “tag” from the WordPress

post’s category. Many users found this unsatisfactory, as categories and tags

are two different types of classification.

On his blog, Carthik Sharma wrote:

Categories and tags address two distinct use cases. Categories are more rigid,

whereas tags are a lightweight way of classifying content. There was, of

course, a plugin that did the job: WordPress users installed the Ultimate Tag

Warrior plugin (though WordPress.com users could not).

In 2007, Ryan Boren opened a ticket to add tagging support to WordPress.

Finally, WordPress would have tags. The next step was to identify the data-

base schema.

A database stores all the content and data of a WordPress user. The database

contains different tables from which data is retrieved. There is a post table,

for example, which stores post-related data. The user table stores user data.

Making changes to the database is not trivial. Any changes have to be done

correctly because undoing them in the future can be difficult. Changes need

to be performant. In a PHP/MySQL setup, increasing the number of database

queries can slow the site down. The question arose: where should we store

tagging data? Should it be in a new table? Or should it be stored in an existing

table?

Ryan proposed two database schemas. One of these created a new table for

Categories can be tags but tags cannot be categories. Categories are like

the huge signs you see on aisles in supermarkets – “Food”, “Hygiene”,

“Frozen,” etc., (sic) they guide you to sections where you can find what

you are looking for. Tags are like the labels on the products themselves.

“

Milestones: The Story of WordPress

151

http://lorelle.wordpress.com/2005/09/11/adding-technorati-tags-to-wordpressmu-sites/#comment-113)
http://lorelle.wordpress.com/2005/09/11/adding-technorati-tags-to-wordpressmu-sites/#comment-113)
http://carthik.net/blog/vault/2006/02/21/tags-are-not-categories/
http://neato.co.nz/ultimate-tag-warrior/
http://neato.co.nz/ultimate-tag-warrior/
https://core.trac.wordpress.org/ticket/3723
https://core.trac.wordpress.org/attachment/ticket/3723/tagging.diff

tags. Matt was keen on the second proposal — putting tags in the categories

database table. He believed it didn’t make sense to create another table iden-

tical to the categories table. In a comment on trac, he wrote:

Previously, WordPress had already successfully reused tables; for example,

posts, pages, and attachments are all stored in the same table, and at that

time, the categories table also contained link categories. Tagging, from a

user’s perspective, enabled them to tag posts, display a list of tags, and dis-

play posts with the same tag. What was the point in duplicating the infra-

structure when it could be achieved within the current table system?

Few developers supported putting tags in the categories table. Some believed

the table would become bloated and argued that adding tags to it meant

including additional code to keep the two taxonomy types separate. This

additional code could introduce bugs, and make future maintenance and

extension of the table difficult for developers.

On wp-hackers, April 2007 was spent discussing the new database schema

for taxonomies. A suggestion that gained considerable community traction

was splitting categories, link categories, and tags into their own individual

tables — but it was impossible to reach consensus.

After checking in the single-table taxonomy structure (changesets #5110 and

#5111), Matt posted a new thread on wp-hackers making the case for using

the categories table. He argued that:

1. It would perform faster as no additional queries would need to be

carried out to support tags. A separate tag table would require at least

two extra queries on the front end.

We already have a ton of rewrite, API, etc. infrastructure around cate-

gories. Mostly I see tagging as a new interface to the data. On the display

side, people want their tags listed separately from their categories, and

probably something like a tag cloud function.

“

Milestones: The Story of WordPress

152

https://core.trac.wordpress.org/attachment/ticket/3723/tagging.diff
https://core.trac.wordpress.org/attachment/ticket/3723/tags.diff
https://core.trac.wordpress.org/attachment/ticket/3723/tags.diff
https://core.trac.wordpress.org/ticket/3723#comment:16
http://lists.wordpress.org/pipermail/wp-hackers/2007-April/011730.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-April/thread.html
https://core.trac.wordpress.org/changeset/5110
https://core.trac.wordpress.org/changeset/5111
http://lists.wordpress.org/pipermail/wp-hackers/2007-April/011930.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-April/011930.html

2. It would provide a better long-term foundation. Tags and categories

would be able to share terms (for example the category “dogs” and the

tag “dogs”).

3. There were no user-facing or plugin-facing problems.

In the thread, he also proposed an alternative, inspired by Drupal’s taxonomy

system: creating a new table for terms within a specific taxonomy. Terms are

the items within a category, tag, or any other taxonomy; dog, cat, and chicken

are all terms within an “animal” taxonomy. This additional table allowed

terms to be shared among taxonomies, while having the same ID (the ID is

what identifies an item in the database). Just one term — “dog” for example

— would be saved in the database, and this term could be used in any taxon-

omy.

Ryan Boren proposed a compromise, one which enabled individual terms to

be part of any taxonomy, while keeping the same ID. It was a three-table

solution, with tables for terms, taxonomies, and objects. Discussion ensued,

a new trac ticket was opened up, and a new structure was created based on

this proposal. The first table, wp_terms, holds basic information about sin-

gle terms. The wp_term_taxonomy table places the term in a taxonomy. The

final table, term_relationships, relates objects (such as posts or links) to a

term_taxonomy_id from the term_taxonomy table.

The database structure for WordPress taxonomies.

This approach had the advantage of assigning one ID to a term name, while

using another table to relate it to a specific taxonomy. It’s extensible for plu-

gin developers who can create their own taxonomies. It also enables large

Milestones: The Story of WordPress

153

http://lists.wordpress.org/pipermail/wp-hackers/2007-April/011991.html
https://core.trac.wordpress.org/ticket/4189
http://milestones.pressbooks.com/files/2015/11/taxonomy_structure.jpg
http://milestones.pressbooks.com/files/2015/11/taxonomy_structure.jpg

multisite networks, such as WordPress.com, to create global taxonomies —

unified tagging systems in which users of different blogs can share terms

within a taxonomy.

Like many WordPress features, tags landed on WordPress.com before they

shipped in WordPress. From the beginning, the new structure caused huge

technical problems. The increase in tables meant that WordPress.com

needed more servers to deal with the additional queries. “It was slower to be

completely honest,” says Matt. “That was a cost that we saw in a very real way

on WordPress.com, but also a hidden cost that we did impose on everyone

who was doing WordPress in the world.”

More than just a challenging code problem, the taxonomy implementation

highlighted problems in the development process. Heavy discussion meant

development dragged on. Some wanted to delay the release. Some wanted to

pull the feature. Others wanted to revise the schema in a subsequent version.

Andy Skelton responded to the wp-hackers discussion:

The 120-day release schedule was in danger because of one issue. Making

major architectural changes to core just weeks before a release was contrary

to the aims of the new development process. A thread suggested delaying

2.2’s release. The architectural changes were too important to be done in an

unsatisfactory way.

To include a premature feature in an on-time release degrades the qual-

ity of the product. I refer to not only the code but the state of the com-

munity. Increments are supposed to be in the direction of better, not

merely more. Better would be to release on time with a modest set of sta-

ble upgrades.

To block release while the one new feature gets sorted out would be a

maladjustment of priorities. If 2.2 seems light on sex appeal, so be it.

Better to keep the release date as promised.

““

Milestones: The Story of WordPress

154

http://archive.wordpress.org/interviews/2014_07_07_Mullenweg.html#L156
http://lists.wordpress.org/pipermail/wp-hackers/2007-April/011988.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-April/011901.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-April/011901.html

Eventually, Matt decided to delay the 2.2 release, pull tags out of core, and

bring in widgets — a user-facing feature that would encourage people to

update their version of WordPress.

Andy Skelton developed widgets for WordPress.com users; he built them to

give bloggers more flexibility with their site’s layout. Widgets are code blocks

users can drag and drop into place through the user interface. They allow

bloggers to add a calendar, a search bar, or some text (among other things)

to a sidebar in any order they wish. It was a hugely popular feature on Word-

Press.com; the plugin for WordPress was also a great success. Launching

widgets on WordPress.com meant that many different users could test them

before they made it into core as a feature.

The new tagging feature finally shipped in WordPress 2.3 — in a structure

that was the outcome of extensive negotiating and haggling. This wrangling

process has had consequences for WordPress developers ever since. Shared

terms have had lasting implications for core developers, plugin developers,

and users. The problem with shared terms is that an item could have multiple

different meanings, but the database treats all of them identically. For exam-

ple, the word apple. A developer creates the taxonomy “Companies” and the

taxonomy “Fruit,” and the user places the term “apple” in both. Conceptu-

ally, this is a different item — a company and a fruit — and they appear in

the user interface as two distinct entities. But the database treats them as the

same thing. So if a user makes changes to one — for example, capitalizing it

— changes are made to both.

In a post in 2013, Andrew Nacin wrote that, “Hindsight is 20/20, and shared

terms are the bane of taxonomies in WordPress.” Each term is represented

in two different ways. Since an individual term can appear in multiple tax-

onomies, it’s not straightforward to identify the actual term in the actual tax-

onomy that you want. It has become a challenge to build new features that

use one identification method when there are parts of WordPress that use the

other.

A case in point: to attach metadata to a term, there must be one object identi-

Milestones: The Story of WordPress

155

http://lists.wordpress.org/pipermail/wp-hackers/2007-April/012090.html
http://andy.wordpress.com/2006/03/08/widgets-user-interface-and-api/
http://make.wordpress.org/core/2013/07/28/potential-roadmap-for-taxonomy-meta-and-post-relationships/

fier. However, the public ID uses a different identifier. It is extremely difficult

to target data consistently when it is identified in multiple ways. WordPress

has a long-term commitment to maintaining backward compatibility, so cre-

ating a new schema isn’t possible. The effort to get rid of shared terms must

progress step by step, over a number of major releases (this is being carried

out over three releases in the 4.x series).

The over-engineered taxonomy system came about through argument and

compromise. When the bazaar model works, it can produce software that

people love to use. The model fails when intractable arguments result in com-

promises that no one is 100 percent happy with. The new taxonomy system

did, however, contain one notable benefit. Neither of the original proposals

for the taxonomy schema (putting tags into the category table, or creating

a new table just for tags) would have allowed developers to create custom

taxonomies, and the latter became a major element in WordPress’ transition

from a straightforward blogging platform to a bonafide content management

system.

Even with these setbacks, software development continued mostly on sched-

ule. Since tags were pulled from 2.2, there were only 114 days between Word-

Press 2.1 and 2.2, and then 129 days between the release of 2.2 and 2.3. While

delays would recur in some future releases, there was nothing that resembled

the long, dark year between 2.0 and 2.1.

Milestones: The Story of WordPress

156

CHAPTER 26

Sponsored Themes

A community of hobbyists drove WordPress for a long time, but eventually,

the hobbyists wanted to support their hobby. Developers charged for cus-

tomizations; Automattic was building a blog network along with related

products like Akismet. Theme designers, too, wanted to make money for the

time and effort they put into developing themes for the project.

It isn’t immediately obvious how someone can make money and still uphold

the ethos of a free software project. How can the two goals co-exist? In the

early days of the WordPress economy, the distinction between freedom and

free beer was blurry. Community members fumbled for answers: is it accept-

able to make money with a GPL project? Who has the right to make money

out of a project that belongs to its volunteers? How can one run a theme busi-

ness when the core product is free?

The period between 2006 and 2009 was one of experimentation and dis-

covery for businesses in the WordPress ecosystem. During these tumultuous

years, the community wrestled with commercialization while the theme mar-

ketplace grew. WordPress users — web users — have always been concerned

with their websites’ look. As WordPress became more popular, many blog-

gers built their own themes and realized that they could generate income

from them.

Themes lagged behind plugins for an official repository. For a long time,

themes were hosted on themes.wordpress.net, an unofficial theme directory.

Theme developers could simply upload their theme and users could browse

the directory.

157

The WordPress Theme Viewer in 2007.

The system was susceptible to spam and duplicate themes. Some theme

developers abused the system by downloading their theme multiple times, to

boost their ranking and appear among the most popular search results. The

Theme Viewer was at the center of the first big debate about themes.

Theme designers tried theme sponsorship as a way to make money from their

designs. Designers often use a link to their website in their theme as a credit.

Kubrick, for example, links to Michael Heilemann’s website. Every site that

installs the theme links to the designer’s website. The number of incoming

links to a website is a variable in Google’s PageRank algorithm: the more

incoming links, the higher the PageRank, the further up in Google’s search

engine results. If thousands (or even hundreds) of people install a theme, the

designer can watch herself soar up Google’s search results. If that link comes

from a high-authority website, even better.

Designers soon realized the link doesn’t have to be to their own website. Links

have an intrinsic value, particularly to internet marketers. With a link in a

Milestones: The Story of WordPress

158

http://milestones.pressbooks.com/files/2015/11/theme-viewer-2007.jpg
http://milestones.pressbooks.com/files/2015/11/theme-viewer-2007.jpg
https://web.archive.org/web/20080415170633/http://themes.wordpress.net/blog/939/first-spammer-caught/

WordPress theme, marketers don’t have to approach individual sites to ask

them for a link. All they have to do is pay a web designer to include it in their

theme, release the theme for free, and soon hundreds of sites are linking back

to their desired URL.

Theme sponsorship approaches varied. Sometimes, companies contacted

well-known theme authors to sell links in their themes. Theme authors could

also be proactive. Authors advertised and sold their themes on websites, oth-

ers auctioned themes at Digital Point, or they simply offered links for sale. In

those early days, once the sale was made, designers would promote the theme

on different WordPress theme sites, including official sites such as the Word-

Press Codex, community resources like the WordPress Theme Viewer, and

reputable blogs such as Weblog Tools Collection. These themes were often

distributed with a Creative Commons 3.0 license, which permits free sharing

and theme adaptation, provided the credit link remains.

Websites focused on making money online became aware of theme sponsor-

ship. Tutorials and articles about theme sponsorship proliferated, and spon-

sorship became part of an acceptable link-building strategy.

Some theme creators published themes with visible text links but didn’t tell

their users about the link, others used PHP or CSS to hide the links, while

others still made it very clear that the theme had been sponsored.

For those in favor of theme sponsorship, the matter was simply about being

paid for their work. Why should they work for free? Selling sponsored links

ensured they could create and distribute free themes, which benefited the

whole community. They argued that designing a good theme takes time and

that non-sponsored themes were inevitably of poorer quality than sponsored

ones.

Sponsored themes quickly became prevalent, with even respected authors

selling links in their themes. Many considered it a “great business model”;

finally, a way to make money from WordPress! Besides, those who supported

the model argued that the default WordPress blogroll contained links to all

Milestones: The Story of WordPress

159

http://themey.com/
http://creativecommons.org/licenses/by/3.0/us/
https://web.archive.org/web/20070306065553/http://www.doshdosh.com/link-building-and-seo/link-building-with-word-press-theme-sponsorship-a-good-idea/
https://web.archive.org/web/20130524074921/http://www.headsetoptions.org/2007/04/09/the-other-point-of-view-%E2%80%93-a-designers-opinion-on-sponsored-themes/
http://www.bloggingpro.com/archives/2007/04/03/wordpress-theme-release-insense/
http://www.blogherald.com/2007/04/06/sponsored-wordpress-themes-a-great-business-model/

of the original developers of WordPress — Alex, Donncha, Dougal, Michel,

Matt, Mike, and Ryan — all of whom were benefiting in Google’s search

results.

Others felt that themes.wordpress.net was becoming a spam repository. More

than 50% of themes on the WordPress Theme Viewer were sponsored

themes. These contained links to everything from iPhone repair services to

gambling websites, and from web hosting to flower delivery. Some themes

were uploaded multiple times with only minor changes, thereby increasing

the number of links on the Theme Viewer. Critics of theme sponsorship —

many of whom were designers themselves — said that the themes polluted

the community. They weren’t against theme designers making money, but

they didn’t want to see the WordPress community become a hive of spam and

SEO tricks. Theme sponsorship had opened the floodgates to SEO and inter-

net marketers.

Buying and selling links went beyond the WordPress community. A few years

earlier, Matt Cutts, the head of web spam at Google, had explained how link-

selling affected PageRank. Google’s algorithm detected paid links, and while

it wasn’t foolproof, it worked pretty well. Paid links made it harder for Google

to gauge a website’s trustworthiness. As a result, Google took away that site’s

ability to affect search results:

WordPress users who installed sponsored themes could be penalized for links

that they weren’t even aware they were hosting. And, hidden links could

further reduce a user’s PageRank. In a post in April 2007, Matt Cutts con-

demned hiding links in a website and asked web masters to disclose paid

links.

Reputable sites that sell links won’t have their search engine rankings

or PageRank penalized – a search for [daily cal] would still return dai-

lycal.org. However, link-selling sites can lose their ability to give reputa-

tion (e.g. PageRank and anchortext).

“

Milestones: The Story of WordPress

160

https://web.archive.org/web/20070409100127/http://blogdesignsolutions.com/2007/03/31/wordpress-theme-sponsorship/
https://web.archive.org/web/20070417004542/http://www.wpdesigner.com/2007/04/05/deteriorating-community
https://web.archive.org/web/20070417004542/http://www.wpdesigner.com/2007/04/05/deteriorating-community
http://www.mattcutts.com/blog/text-links-and-pagerank/
http://www.mattcutts.com/blog/text-links-and-pagerank/
http://www.mattcutts.com/blog/hidden-links/

There were plenty of themes that contained links that weren’t sponsored.

Designers would include a credit link to their website in the theme’s footer.

Designing and releasing a WordPress theme allowed designers to increase

their profile on the web. Like internet marketers, their websites benefited

from higher search engine results, and website visitors might click on the

link, generating more business for the designer.

It was common at that time for a designer to release their themes under a

Creative Commons license, which asks users to leave the credit link intact. In

the middle of the sponsored link furor, one designer took the next step. Tung

Do (tungdo) authored the popular WordPress resource WPDesigner.com,

along with a number of WordPress themes. In April 2007, he announced he

would release his themes under the GPL. “Despite that I’m just ONE theme

designer and despite that I don’t contribute directly the WordPress code

(sic),” he wrote, “I believe that switching to GPL is a step in the direction to

support the WordPress team and to help the WordPress theme community

grow (positively).”

Weblog Tools Collection (WLTC) was the first website to take direct action

against sponsored themes. At WLTC, designers submitted themes and Mark

Ghosh, who ran the site, regularly wrote about theme releases. In April, Mark

weighed in on sponsored themes. While he didn’t condemn them outright, he

did institute a new policy:

The 166 comments Ghosh received highlighted just how divisive the issue

was. Viewpoints ran to both extremes. Many users were unhappy about links

All themes with sponsorship links will be labelled as such when they are

published, non-sponsored themes will be published first, and we require

sponsorship disclosure to be made to us when authors make us aware of

their new themes. If this disclosure is not provided and the theme has

sponsored links, the author will be barred from being able to post their

new themes on weblogtoolscollection.com until further notice.

“

Milestones: The Story of WordPress

161

https://web.archive.org/web/20080104150212/http://www.adii.co.za/2007/04/11/design-credit-ramblings-again/
http://profiles.wordpress.org/tungdo
https://web.archive.org/web/20080113192235/http://www.wpdesigner.com/2007/04/10/switching-from-creative-commons-to-gpl/
http://weblogtoolscollection.com/archives/2007/04/20/wordpress-theme-releases-for-0420/
http://weblogtoolscollection.com/archives/2007/04/09/sponsored-themes/#comments

being placed in their websites — this was particularly concerning to people

whose websites had a moral or religious bent. While users supported linking

to theme authors, they weren’t happy that links for credit cards or flower

delivery were being displayed on their website. Theme developers said that it

was a way for them to fund themselves and the creation of free themes, and

that they were sad to see it being abused.

A few days later, Matt followed Mark’s lead and posted on WLTC about spon-

sored themes. He had become aware of the trend back in September 2006,

when he had downloaded the Barthelme theme from plaintxt.org and discov-

ered a link to a New York flower delivery service. For him, there were three

main issues:

• that sponsored links negatively impact a user’s Trustrank and that the

user hadn’t made this decision themselves;

• that sponsored themes are adware;

• that theme authors who sell links and release their work under a

creative commons license contravene the GPL.

All of these factors meant a negative experience for WordPress users. While

the project allowed people to make money from WordPress-related products

and services, it didn’t support methods detrimental to users. Whatever the

original intentions of sponsored links, themes had become so polluted that

they undermined the trust that a user had in the software and in the commu-

nity. As a user-focused community, the project needed to regain that trust.

The argument that theme authors deserved to be compensated for their work

held little weight when WordPress itself had been built by volunteers. There

was no opposition to people making money from WordPress, but official pro-

ject resources should only promote companies and individuals in line with

the core project ethos.

Matt closed the post, linking to a vote on a proposal to remove sponsored

themes from WordPress.org. The discussion on the thread has arguments

for and against theme sponsorship; some voted for a complete ban, others

Milestones: The Story of WordPress

162

http://weblogtoolscollection.com/archives/2007/04/12/on-sponsored-themes/
http://weblogtoolscollection.com/archives/2007/04/12/on-sponsored-themes/
http://lists.wordpress.org/pipermail/wp-hackers/2006-September/008293.html
http://wordpress.org/ideas/topic/remove-sponsored-themes-from-wordpressorg

for sponsored theme disclosure, while others felt theme designers should be

allowed to include any links they want in their theme.

Whatever the results of the vote, the tide turned against sponsored themes.

These were not looked upon favorably at WordPress.org, with sites and peo-

ple who had promoted sponsored themes already banned from the forums.

Even Matt Cutts weighed in, saying that he agreed 100 percent with Matt’s

position on sponsored themes.

In July, Mark announced on WLTC that he would no longer promote spon-

sored themes, and shortly after, Matt announced that all sponsored themes

would be removed from themes.WordPress.net. Despite a positive reaction

from much of the community, there was a backlash, primarily directed at

Mark and Matt.

Some theme developers saw theme sponsorship as a valid way of making

money, and were angry about being branded as “unethical.” This was par-

ticularly the case when they saw other theme developers behaving unethi-

cally, from downvoting other developers’ themes and using sock puppetry to

upvote their own, to stuffing themes with copious links to their website.

Despite the sponsored theme ban on official WordPress resources, link sales

continue today. The Digital Point forums, for example, are filled with themes

available for sponsorship. Theme sponsorship is not without its dangers. In

2012, a former theme sponsor posted on the Webmaster world forums about

Google penalization for “inorganic” incoming links:

Some 2+ years ago in throws (sic) of questionable wisdom I sponsored

about five or six WordPress themes where the “Designed by” link in the

footer gets replaced by a link to your site. They were nice looking and

“relevant” themes, at least as far as the name and pictures used in design

suggest. They were not used much initially and I did not think much of

them until these “unnatural links” notices started flying a month ago.

Google confirmed that these links were the issue, but with the themes in

“

Milestones: The Story of WordPress

163

http://wordpress.org/support/topic/wp-theme-hockey
http://www.mattcutts.com/blog/by-the-way-2
http://www.mattcutts.com/blog/by-the-way-2
http://weblogtoolscollection.com/archives/2007/07/10/no-sponsored-themes-on-weblogtoolscollection/
http://weblogtoolscollection.com/archives/2007/07/10/no-sponsored-themes-on-weblogtoolscollection/
http://ma.tt/2007/07/wltc-high-ground/
http://ma.tt/2007/07/wltc-high-ground/
http://weblogtoolscollection.com/archives/2007/07/16/turning-the-other-cheek/
http://ma.tt/2007/07/love-and-hate/
https://web.archive.org/web/20130523083509/http://www.mandarinmusing.com/2007/07/14/if-i-could-walk-on-water-you%E2%80%99d-complain-i-can%E2%80%99t-swim/
http://www.webmasterworld.com/google/4445558.htm

Sponsored themes were the first large-scale attempt at making money from

WordPress themes. Custom design and development existed too, but link

sales appeared to be a valid way of making money, particularly at a period

when the web teemed with SEO experts and internet marketers on an

unremitting search for ways to climb Google’s search results. Sponsored

themes brought WordPress, not for the first time, into proximity with SEO,

both white hat and black hat. Selling links in a theme slipped easily into ques-

tionable SEO practices; it also turned out to be an unsustainable business

model. With Google as the rule-maker, a simple policy change could wipe

out an entire market. And as sponsored themes started to disappear from the

community, theme designers and developers looked for new ways to support

their hobby.

the wild there wasn’t a whole lot that the sponsor could do about it other

than contact the websites using the theme and asking them to remove

the link.

Milestones: The Story of WordPress

164

CHAPTER 27

Update Notifications

Peter Westwood became a core committer in July 2007, bringing the number

of people who could commit code to four. Westi got involved in the project

in 2004 while working as a software engineer — he had written a script

that downloaded WordPress and installed it on a server. He helped with the

Codex, and found and fixed bugs. Like many other developers, he had little

PHP experience when he came to the project.

The wp-hackers mailing list was in its third year, but productive discussion

there diminished over time. More and more decision-making happened else-

where. For example, in February 2007, Ryan integrated phpmailer with

WordPress. The code was committed after a short discussion on trac. It

wasn’t until September that a phpmailer conversation took place on wp-

hackers — one that few committers participated in.

Exchanges on the mailing list inclined less toward development, and more

toward meta-discussions about the mailing list itself, from the high signal-to-

noise ratio, to ideas to improve mailing list etiquette.

Andy Skelton wrote about the problem with wp-hackers:

There was too much talking and not enough hacking on wp-hackers, and

There is just one thing I want to make clear about wp-hackers: a hacker

is not someone who discusses or pays lip service or dissents or casts

a vote or says what can or should be done. Hackers aren’t committee

members. Hackers are more interested in proving what can be done than

arguing about it.

“

165

https://core.trac.wordpress.org/ticket/3862
https://core.trac.wordpress.org/ticket/3862
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/014497.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/014497.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/015058.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/015173.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/015173.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-October/015489.html
http://andy.wordpress.com/2007/10/03/wp-hackers/

opinion often swayed conversations rather than fact. Mailing lists can

become dominated by people who have time to comment, rather than those

doing the work. The latter might have the most valuable feedback, but they’re

often too busy to keep up with a high-traffic mailing list.

WordPress isn’t alone in this phenomenon. A 2013 study of the Apache

Lucene mailing list (PDF) found that “although the declared intent of devel-

opment mailing list communication is to discuss project internals and code

changes/additions, only 35 percent of the email threads regard the imple-

mentation of code artefacts.” As well as discussing development, mailing

list participants discussed social norms and behavior. The study also found

that project developers participate in less than 75 percent of the discussions,

and start only half of them. Developers prefer to communicate on the issue-

tracking software — a finding resonant with WordPress, as developers ulti-

mately switched from the mailing list to WordPress trac.

Mailing lists tend toward bike shed discussions, 1 a term derived from Parkin-

son’s law of triviality:

An atomic plant is so vast that only very few people can grasp it. The board of

directors assume that somebody has the knowledge and has done the ground-

work. In contrast, everyone can build a bike shed, so everyone has an opinion

on how it should be done, and especially what color it should be painted.

Parkinson shows how you can go in to the board of directors and get

approval for building a multi-million or even billion dollar atomic power

plant, but if you want to build a bike shed you will be tangled up in end-

less discussions.

“

1. The notion of a bike shed was popularized in FOSS projects by Karl Fogel. In his book, Producing

Open Source Software, he reprints an email from Poul-Henning Kamp to the FreeBSD mailing list

with the title “A bike shed (any color will do) on greener grass…,” in which Kamp uses the “painting

the bikeshed” analogy to describe discussions on the mailing list.

Milestones: The Story of WordPress

166

http://sback.it/publications/msr2013.pdf
http://sback.it/publications/msr2013.pdf
https://en.wikipedia.org/wiki/Parkinson%27s_law_of_triviality
https://en.wikipedia.org/wiki/Parkinson%27s_law_of_triviality
http://producingoss.com/
http://producingoss.com/
http://bikeshed.com/

In his book Producing Open Source Software, Karl Fogel notes that as the

technical difficulty of an issue goes down, the “probability of meandering

goes up:”

With its community growth and low barrier to entry, the WordPress project

has been susceptible to bike shed discussions like any other free software pro-

ject. A Google search for “bikeshed” on the wp-hackers mailing list displays

the discussions in which someone has cried “bike shed,” as does a similar

search on trac.

In 2007, for example, discussion about what to call links got heated. A mem-

ber of wp-hackers asked, “Anyone know why it’s still called Blogroll in admin,

when it’s called Bookmarks in functions (wp_list_bookmarks) and yet dis-

plays by default as a list of “Links” in the sidebar?” The original post,

“Blogroll, Bookmarks, Links,” generated a total of 79 emails on the mailing

list alone, and the discussion spilled over to a trac ticket.

Of course, one person’s bike shed is another person’s bête noire, and there

were times when wp-hackers was alight with community members who

insisted on giving specific issues serious consideration. One such instance

was in early September 2007, before the release of WordPress 2.3, which

contained the update notification system. This system alerts users when

a new version of WordPress or of a plugin becomes available to install.

The system collects information about the WordPress version, PHP version,

locale setting, and the website’s URL from a user’s site, and sends it back

…consensus is hardest to achieve in technical questions that are simple

to understand and easy to have an opinion about, and in “soft” topics

such as organization, publicity, funding, etc. People can participate in

those arguments forever, because there are no qualifications necessary

for doing so, no clear ways to decide (even afterward) if a decision

was right or wrong, and because simply outwaiting other discussants is

sometimes a successful tactic.

“

Milestones: The Story of WordPress

167

http://producingoss.com/en/producingoss.html#bikeshed
http://producingoss.com/en/producingoss.html#bikeshed
https://www.google.com/search?q=site%3Ahttp%3A%2F%2Flists.wordpress.org%2Fpipermail%2Fwp-hackers%2F+bikeshed&oq=site%3A&aqs=chrome.2.69i57j69i58j69i59j69i65l3.2535j0j4&sourceid=chrome&es_sm=91&ie=UTF-8#safe=strict&q=site:http:%2F%2Flists.automattic.com%2Fpipermail%2Fwp-hackers%2F+bikeshed
https://core.trac.wordpress.org/search?q=bikeshed&noquickjump=1&changeset=on&ticket=on
https://core.trac.wordpress.org/search?q=bikeshed&noquickjump=1&changeset=on&ticket=on
http://lists.wordpress.org/pipermail/wp-hackers/2007-June/013299.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-June/013299.html
https://core.trac.wordpress.org/ticket/3695
https://core.trac.wordpress.org/ticket/1476

to http://api.wordpress.org. A further piece of code carries a plugin update

check, which sends the website’s URL, WordPress version, and plugin info

(including inactive plugins) to api.wordpress.org.

For some, the data collection appeared contrary to the free software project

ethos. They thought that collecting the blog URL was unnecessary. A ticket

on WordPress trac requested that update checking be anonymized. Others

had no problem with WordPress collecting the data, but were unhappy that

WordPress did not disclose it. A number of people who didn’t oppose the

changes nevertheless felt that there should be a way to opt out, so that users

who required complete privacy would be able to turn off data collection.

This debate goes to the heart of one of WordPress’ design philosophies: deci-

sions, not options. This idea is heavily influenced by a 2002 article written

by GNOME contributor Havoc Pennington. Many free software user inter-

faces cram in options so that they can be configured in multiple ways. If

an argument ensues in a software project about whether something should

or shouldn’t be added, a superficial solution is to add an option. The more

options one adds, the more unwieldy a user interface becomes. Pennington

writes, “preferences have a cost [..], each one has a price and you have to con-

sider its value.” He outlines the problem with too many options:

• When there are too many preferences it’s difficult for a user to find

them.

• They can damage QA and testing. Some bugs only happen when a

certain configuration of options is selected.

• They make creating a good UI difficult.

• They keep people from fixing real bugs.

• They can confuse users.

• The space that you have for preferences is finite so fill it wisely.

WordPress developers carefully consider the introduction of any new option,

and have become better at it over time. When the data collection question

arose, they were extremely reluctant to introduce new options. Westi posted

to wp-hackers:

Milestones: The Story of WordPress

168

https://core.trac.wordpress.org/changeset/5913
https://core.trac.wordpress.org/ticket/4795
https://core.trac.wordpress.org/ticket/4795
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/014860.html
https://core.trac.wordpress.org/ticket/5066
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/014919.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/014919.html
http://ometer.com/free-software-ui.html
http://ometer.com/free-software-ui.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/015119.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/015119.html

What benefit would an opt-out button for update notifications provide to

users? The purpose of the notifications is to help users to stay up-to-date and

secure. Adding an option to opt out of update notifications would only reduce

the number of people who updated their sites, and increase the number of

insecure instances of WordPress. The benefit to adding the option didn’t out-

weigh the cost.

Consequently, and despite the extensive discussion on wp-hackers, Word-

Press 2.3 was launched as planned, with the following note in the announce-

ment post:

The project also published the first version of a privacy policy on Word-

Press.org.

Amid these discussions, the project structure changed when Peter Westwood

and Mark Jaquith became lead developers. The announcement post describes

them as “a few old faces who are taking on bigger roles in the community.”

Both were active committers who had taken on greater leadership roles. Both

had participated in many of the more challenging discussions in the commu-

nity, and they didn’t always agree with current project leadership. They both,

for example, opposed Matt’s proposal for the taxonomy structure, and Mark

was one of the people who voiced concerns over data collection in WordPress

One of the core design ideas for WordPress is that we don’t introduce

options lightly. The moment you think of making a feature optional you

challenge the argument for introducing the feature in the beginning.
“

Our new update notification lets you know when there is a new release of

WordPress or when any of the plugins you use has an update available.

It works by sending your blog URL, plugins, and version information to

our new api.wordpress.org service which then compares it to the plugin

database and tells you whats (sic) the latest and greatest you can use.

“

Milestones: The Story of WordPress

169

http://wordpress.org/news/2007/09/wordpress-23/
http://wordpress.org/news/2007/09/wordpress-23/
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/015014.html
http://lists.wordpress.org/pipermail/wp-hackers/2007-September/015014.html
https://wordpress.org/news/2007/09/new-faces/
https://wordpress.org/news/2007/09/new-faces/

2.3. They added new perspectives to the project leadership: for the first time

since the early days of the project, there were people other than Matt and

Ryan to help guide and shape development of both the software and the pro-

ject.

Milestones: The Story of WordPress

170

CHAPTER 28

Happy Cog Redesign

Shuttle had failed back in 2006 and WordPress’ admin still needed a

redesign. Matt turned to design studio Happy Cog. Jeffrey Zeldman, Happy

Cog founder, led the project, along with WordPress’ logo designer Jason

Santa Maria and UX designer Liz Danzico.

Whereas Shuttle focused on aesthetics, Happy Cog identified and corrected

information architecture problems, and updated and improved WordPress’

look and feel. Despite the project’s user-first ethos, the admin screens had

become cluttered, as new features were sometimes added in a haphazard

way. The change between WordPress 1.5 and WordPress 2.3 speaks for itself.

The Write screen in WordPress 1.5.

171

http://milestones.pressbooks.com/files/2015/11/wp_1_5.png
http://milestones.pressbooks.com/files/2015/11/wp_1_5.png

The Write screen in WordPress 2.3.

Happy Cog produced designs that WordPress developers then coded. The

project included user research and an interface audit to identify WordPress’

strengths and weaknesses, and to inform new structural and interface

designs.

WordPress, as a free software project, was an unusual client for a traditional

design agency. Matt and Jeffrey formed a buffer between the Happy Cog team

and the community, but the designers, nonetheless, knew this was an entirely

different type of client. Jason Santa Maria says:

Any other client will have customers and their own community, but you“

Milestones: The Story of WordPress

172

http://milestones.pressbooks.com/files/2015/11/wp_2_3.png
http://milestones.pressbooks.com/files/2015/11/wp_2_3.png
http://archive.wordpress.org/interviews/2014_01_22_Santa_Maria.html#L82

An audit and usability review were among the first steps. Liz Danzico

researched and produced a 25-page document on WordPress. WordPress

needed an admin that didn’t intrude on the user. In the audit, she quotes

Mark Jaquith: “That’s when I know WordPress is doing its job: when people

aren’t even aware they’re using it because they’re so busy using it!”

Liz spoke to Mark Riley, whose support forum experience gave him direct

access to users’ complaints. One of the major problems he highlighted was

the clutter that had amassed in the Write screen between WordPress 1.2 and

WordPress 2.0. Features had been added and then tucked into modules using

the pods introduced by the Shuttle project. There were many actions a user

could take on the Write screen, and many of them were confusing or hidden.

Discussion focused on navigation structure: labelling, position, and func-

tionality grouping. Should they go with an object-oriented navigation (Posts,

Pages, Comments, etc.) or an action-oriented navigation (Write, Manage,

etc.)? Liz’s first hunch — supported by the newly launched Tumblr — was

that users preferred navigating by nouns. She felt WordPress’ verb structure

was confusing. The first navigational structure iterations introduced both a

noun version and a verb version. In the end, however, and after limited user

really have to just manage the people inside of a company, whereas when

you’re dealing with an open source project, you deal with the people that

you’re talking with, but there’s this whole gamut of other people that you

will only ever get to talk to a small portion of. I think that that’s really

difficult.

Plus, I think that on an open source project like this, it’s inherently dif-

ferent, not just because it’s more of a CMS than an informational website

— the design needs are different — but it’s just a different kind of way to

work, knowing that whatever you do probably isn’t going to stick around

for very long. It’s going to continue to evolve and continue to be adapted.

Usually, in the very near-term as well, not even three-four months from

now, but next week.

“

Milestones: The Story of WordPress

173

http://markjaquith.wordpress.com/2007/02/21/engine-awareness/

testing, the team went with a mixture of nouns and verbs: Write, Manage,

Design, Comments. This meant that the functionality for different content

types was scattered over different menu items — to write a post, for example,

users would go to “Write.” To manage the same post they would navigate to

“Manage.”

Happy Cog provided extensive and detailed proposals and research for Word-

Press, and shared them with Matt. Their reports display a sensitivity to web

users, and an appreciation for simplifying and streamlining WordPress.

When it came to the design stage, Jason Santa Maria created three designs to

present to Matt, who would choose one to move forward.

He designed three early mockups:

Milestones: The Story of WordPress

174

Mockup Number 1.

Milestones: The Story of WordPress

175

http://milestones.pressbooks.com/files/2015/11/happy-cog-design-a.jpg
http://milestones.pressbooks.com/files/2015/11/happy-cog-design-a.jpg

Mockup Number 2.

Milestones: The Story of WordPress

176

http://milestones.pressbooks.com/files/2015/11/happy-cog-design-b.jpg
http://milestones.pressbooks.com/files/2015/11/happy-cog-design-b.jpg

Mockup Number 3.

Matt chose the visually lighter design. Jason had taken Shuttle’s heavy blue

palette and lightened the interface. An orange accent color complemented the

lighter blues.

When the design was finally signed off, WordPress trunk started to trans-

form. As changes took place, community feedback was posted to wp-hackers.

Was the admin actually more usable? Major changes broke familiar patterns.

Milestones: The Story of WordPress

177

http://milestones.pressbooks.com/files/2015/11/happy-cog-design-c.jpg
http://milestones.pressbooks.com/files/2015/11/happy-cog-design-c.jpg
http://lists.wordpress.org/pipermail/wp-hackers/2008-February/017849.html
http://lists.wordpress.org/pipermail/wp-hackers/2008-February/017850.html

Some comments compared the design to Shuttle’s; a few community mem-

bers even wanted to implement Shuttle’s interface.

Just before release, a sneak peek was posted to the development blog, and

WordPress users installed the release candidate to get a better look. The

response echoed that of the rest of the community. Regular WordPress users

were surprised by the functionality changes to the Write screen. For some, it

was a step backward.

The Write screen in the WordPress 2.5 admin.

WordPress 2.4 was the first version to fall significantly behind the 120-day

release cycle. Versions 2.2 and 2.3 were mostly on schedule, but the Happy

Cog redesign brought in major changes to the codebase. Rather than just

Milestones: The Story of WordPress

178

http://weblogtoolscollection.com/archives/2008/01/02/wordpress-24-admin-preview/#comment-1207158
http://wordpress.org/development/2008/03/25-sneak-peek/
http://www.neatorama.com/2008/04/21/wordpress-25-admin-backend-category-shenanigans-and-how-to-fix-it/#!vG29i
http://milestones.pressbooks.com/files/2015/11/2_5_admin.jpg
http://milestones.pressbooks.com/files/2015/11/2_5_admin.jpg

delaying release, a version was skipped, moving straight from WordPress 2.3

to WordPress 2.5, which was scheduled for release in March.

But there were bigger problems with this release cycle than just the delay. The

community felt that they had not been consulted; they felt disenfranchised.

In some ways, the redesign was destined to fail before it even began. With no

participation and no process, there was no way to ensure community buy-in.

Jeffrey Zeldman, reflecting on the process, says:

As with Shuttle before it, problems surfaced in the design process. Free soft-

ware projects are collaborative enterprises; when part of the process moves

behind closed doors to avoid the problems of working by committee, new

problems arise. However much a project tries to avoid it, that committee

exists and must have its say.

It worked for us, from our perspective, that we were a small team report-

ing to a single client who had life or death approval over everything. We

had to please one user: Matt. He could say yes or no. We completely

bypassed the community. That enabled us to get a design done that we

felt was crisp and focused and achieved certain goals. And that sounds

great. Except that, because the community wasn’t involved, inevitably,

the design then became unpopular because nobody got their say in it.

And if I could go back and do it again, I would involve them up front, and

find ways to get my feedback without it turning into a committee cluster-

cuss.

“

Milestones: The Story of WordPress

179

http://lists.wordpress.org/pipermail/wp-hackers/2008-January/016993.html
http://lists.wordpress.org/pipermail/wp-hackers/2008-January/016993.html

CHAPTER 29

Premium Themes

In the wake of sponsored themes, theme developers were looking for ways to

make money. Some made money from customizations, but increasingly, peo-

ple wanted to make money with WordPress products rather than with ser-

vices. Why build one site when you can build one theme and sell it multiple

times? If theme developers couldn’t sell links, they could do the next best

thing — sell themes directly to WordPress users. There was, however, some

hesitation around this. When the project removed sponsored themes from

official resources, people interpreted this in different ways:

“WordPress doesn’t support sponsored themes.”

“WordPress doesn’t want me to make money.”

“Automattic doesn’t want me to make money.”

Some people felt that Matt only wanted Automattic to make money from

WordPress, a situation that wasn’t helped when, after the sponsored themes

debate, Matt announced a WordPress.com theme marketplace, resulting in

cries of hypocrisy. Despite laying the initial groundwork, Automattic decided

not to go ahead with the plan. “It didn’t seem right to go into it when we

hadn’t really worked out all the licensing issues yet,” says Matt. 1

While the WordPress.com theme marketplace was set aside, employees

inside Automattic were still curious about whether people would pay for a

blog design. Noël Jackson (noel), a former Automattic employee, recalls the

time when premium WordPress themes started to appear:

1. The theme marketplace didn't launch until 2011, four years after the initial announcement.

180

http://ma.tt/2007/11/wpcom-marketplace-idea/
http://www.blogherald.com/2007/11/01/wordpress-theme-marketplace-hypocrisy-from-matt/
http://archive.wordpress.org/interviews/2014_04_01_Mullenweg.html#L157
http://profiles.wordpress.org/noel
http://archive.wordpress.org/interviews/2014_03_23_Jackson.html#L48

Bloggers who used WordPress dabbled with making themes. They released

them for free. “A funny dynamic happened,” recalls Cory Miller

(corymiller303), the founder of iThemes. “People started hitting my contact

form and saying will you customize this, or will you do this theme, or will you

do all that stuff, and I was like I’m, I’m kind of a fraud here. And so I started

charging for my work.” This is the familiar tale that some of the most promi-

nent WordPress business founders tell today. Many of the people who run

these businesses started out simply by making themes. These were often acci-

dental businesses, with accidental businesspeople — people who came to the

community to scratch their own itch and found themselves inundated with

requests for help, support, and customizations.

Although sites like Template Monster sold WordPress themes as early as

2006, the last quarter of 2007 saw the first surge in WordPress premium

theme releases from within the WordPress community. Brian Gardner’s Rev-

olution — one of the first premium WordPress themes — launched in August

2007. A few weeks after, Tung Do released Showcase. Later that year also

marked the launches of Proximity from Nathan Rice, Solostream from

Michael Pollock, Cornerstone Theme from Charity Ondriezek, Premium

News Theme from Adii Pienaar, and PortfolioPress from Magnus Jepson.

Early the following year, Chris Pearson released Thesis.

Most of the theme vendors followed a similar path: from blogger to hobbyist

themer. From releasing a free theme to testing the brand-new market. Few

had career aspirations — these were side projects to make them money in

their spare time. Some also did independent development for clients. But

It was interesting, especially in the beginning when it started happening.

It was interesting to see revenue figures for themes that were released as

a premium theme — not a WordPress.com premium theme — but some-

one selling their theme and keeping the GPL license and thinking, “Well,

people are actually buying this.” There wasn’t an issue with it. I think

that made everybody happy.

“

Milestones: The Story of WordPress

181

http://archive.wordpress.org/interviews/2014_05_11_Miller.html#L10
https://profiles.wordpress.org/corymiller303
https://web.archive.org/web/20070825022722/http://www.briangardner.com/blog/the-revolution-begins.htm
https://web.archive.org/web/20070825022722/http://www.briangardner.com/blog/the-revolution-begins.htm
https://web.archive.org/web/20071016132417/http://www.wpdesigner.com/2007/09/10/showcase/
http://www.nathanrice.net/blog/premium-wordpress-themes/
https://web.archive.org/web/20080202093724/http://www.solostream.com/2007/10/28/wordpress-theme-solostream-40/
https://web.archive.org/web/20080106173642/http://designadaptations.com/notebook/a-cornerstone-to-build-from/#comment-2836
https://web.archive.org/web/20071106033124/http://www.adii.co.za/2007/11/02/the-launch-of-premium-news-theme
https://web.archive.org/web/20071106033124/http://www.adii.co.za/2007/11/02/the-launch-of-premium-news-theme
http://www.pearsonified.com/2008/03/diy-themes-pre-launch.php

the idea that selling WordPress themes could be big business didn’t cross

their minds. “Even when I quit my job to spend more time working on these

themes,” says Adii Pienaar (adii), co-founder of WooThemes, “and eventually

rebranding and calling that effort WooThemes, I still thought that I was going

to build a business around the custom design/development stuff, around

consulting.”

Theme sellers weren’t sure how to price and license their themes. There was

no community consensus about licensing and nothing clear from the project.

Theme authors created their own license. A common model was offering a

single-use license to use a theme on one site, and a developer or bulk license

to use a theme on more than one site. These licenses restricted the number of

sites on which a theme could be installed, and what the user could do with a

theme. Some, for example, required that the user retain the author credit in

the theme, which enabled the authors to charge users to remove the attribu-

tion link.

Users downloaded a free theme at no cost, or paid for a premium one. The

label “premium,” however, implied that paid themes were intrinsically bet-

ter, as though attaching a price tag elevated premium themes above free (and

theoretically inferior) themes.

These commercial themes were often branded as “premium themes,” but

there was little consensus about what made a theme “premium.” When

Weblog Tools Collection (WLTC) asked, “What Makes a WordPress Theme

Premium?,” responses from community members were varied: “better doc-

umentation and support,” “less bloggy,” “better design,” “better features,”

“better code,” and “more functionality.” Several people argued that money

was the only difference between free and premium themes.

What distinguished designers and developers making free and premium

themes was the time and effort they put into them, and the level of effort

required to set them up. In an interview in June 2008, premium theme devel-

oper Darren Hoyt talks about the differences between creating a free and pre-

mium theme. He outlines his considerations:

Milestones: The Story of WordPress

182

http://archive.wordpress.org/interviews/2014_03_05_Pienaar.html#L63
https://profiles.wordpress.org/adii
https://web.archive.org/web/20081005045548/http://www.briangardner.com/blog/how-much-would-you-pay-for-a-premium-theme.htm
http://diythemes.com/thesis/remove-attribution-link/
http://diythemes.com/thesis/remove-attribution-link/
http://weblogtoolscollection.com/archives/2008/01/12/what-makes-a-wordpress-theme-premium/
http://weblogtoolscollection.com/archives/2008/01/12/what-makes-a-wordpress-theme-premium/
http://weblogtoolscollection.com/archives/2008/01/12/what-makes-a-wordpress-theme-premium/#comments
http://vandelaydesign.com/blog/wordpress/free-vs-premium/

• That hand-coding and tweaks to the files should be minimized with the

inclusion of a custom control panel.

• That users shouldn’t have to download plugins so all theme

functionality was bundled with it. “We tried to make Mimbo Pro more

than just a theme or ‘skin’ and more like an application unto itself.”

• That best practices for commenting code, valid markup, and well-

written CSS are followed.

• That documentation be provided and evolve.

• That buyers get ongoing support and interactions with the developer.

Brian Gardner, designer of Revolution, said in a March 2008 interview that

for him, a premium theme differs in how the site looks and acts. “If people

respond to a site and say ‘wow, I can’t believe WordPress is behind that,’

that’s what premium themes are all about.”

Attitudes varied widely between users, developers, and other community

members. The user who interviewed Brian Gardner was a keen Revolution

advocate. He commends the guaranteed support, comfort, safety, and the

feeling that he’s being looked after. A price tag doesn’t necessarily equate to

these things, but some premium theme developers make customer support

a priority — and their theme sales rise. WordPress was no longer confined

to the world of personal blogging. Businesses, particularly small businesses,

used WordPress to build their websites. Paying a small fee for peace of mind

was a worthwhile trade-off; it brought the promise of ongoing support. A free

theme came with no guarantees.

Some theme developers were frustrated by premium theme sellers. “‘Pre-

mium,’ when it comes to WordPress themes,” writes Ian Stewart in 2008

(iandstewart), “simply means ‘it costs money’ and not ‘of superior quality.'”

The false dichotomy set up by the “premium” label undervalues themes

released for free. Justin Tadlock (greenshady) released the Options theme to

prove that there was nothing to stop developers from releasing a free theme

fully packed with bells and whistles. He was one of the first to explore an

alternative business model, setting up his own theme club. In contrast to

Milestones: The Story of WordPress

183

https://web.archive.org/web/20080427183149/http://www.revolutionizeyourblog.com/askthanks.php
https://web.archive.org/web/20080427183149/http://www.revolutionizeyourblog.com/askthanks.php
http://themeshaper.com/2008/02/28/the-future-of-premium-wordpress-themes/
https://profiles.wordpress.org/iandstewart
https://profiles.wordpress.org/greenshady
http://justintadlock.com/archives/2008/02/24/options-wordpress-theme
http://justintadlock.com/archives/2008/05/31/project-m

theme sales, he wanted to create a community around theme releases and

support. Later that year, he launched Theme Hybrid.

The issue of whether someone should be selling themes wasn’t clear-cut.

Some thought that you had to choose: you could either be involved in the

community, or make money selling themes or plugins.

In a discussion on a wp-hackers thread from March 2008, the author con-

cluded that a person either focused on making money or contributing to the

community. But Mark Jaquith pointed out that the two aren’t mutually exclu-

sive: it’s possible to make money with WordPress, while still making a posi-

tive contribution to the project. In the same thread, Matt outlined how he saw

businesses best interacting with the WordPress community:

Matt didn’t see the premium theme market as in step with the community.

He proclaimed premium theme sellers were in “murky waters,” pointing out

that there wasn’t much money in the enterprise. In a 2009 conversation with

Ptah Dunbar, Matt said that he didn’t like where premium WordPress themes

were going, and that the premium theme market wasn’t helping the commu-

nity to grow.

Whatever the community’s perception, users pay for themes, and companies

that sell themes make money. Take ThemeForest, for example. The market-

place sells themes and templates for WordPress and different CMSs, as well

as HTML templates. Upon launch in September 2008, ThemeForest sold

A GPL software community is like the environment. Yes you could make

profit building widgets in your widget factory and not pay any heed to

the forests you’re clearing or the rivers your (sic) polluting, but in a few

years you’re going to start to deplete the commons, and your business

and public perception will be in peril…Contrast that with sustainable

development, with giving back to the community that sustains (and ulti-

mately consumes) your services and you have the makings of something

that could be around for generations to come.

“

Milestones: The Story of WordPress

184

http://justintadlock.com/archives/2008/08/05/wordpress-theme-club-launch
http://lists.wordpress.org/pipermail/wp-hackers/2008-March/018694.html
http://lists.wordpress.org/pipermail/wp-hackers/2008-March/018792.html
http://lists.wordpress.org/pipermail/wp-hackers/2008-March/018780.html

mostly HTML templates; WordPress themes were 25% of sales. By Septem-

ber 2009, WordPress themes were 40% of all ThemeForest sales. In 2013,

WordPress themes were 60% of all sales.

The discussions weren’t just focused on whether people should make money

from WordPress. A bigger question was: how should themes be licensed?

WordPress itself is licensed under the GPL. The GPL’s copyleft distribution

terms ensure that distributions and modifications of the software carry the

same license. Derivative works also carry the license. Is a theme derivative

of WordPress? There were arguments for and against, speculation, and opin-

ion — much of which was based on interpretations (or secondhand interpre-

tations) of the license. Court cases are rarely fought around the GPL. Those

that come close are often settled out of court, as with the Free Software Foun-

dation vs. Cisco lawsuit, which happened at the same time as the WordPress

community’s debate over WordPress themes. The community was divided

into two camps — those who thought themes didn’t have to be GPL, and those

who thought they did.

There are a number of different factors, and one is whether a WordPress

install and its theme is an “aggregation” or a “combination.” The GPL FAQ

distinguishes between the two: an aggregate means putting two programs

side by side (like on a hard disc or a CD-ROM). People who thought that

themes don’t have to be GPL argued that WordPress with a theme is an

aggregate. They believed that a theme modifies the output of WordPress,

but doesn’t necessarily engage with its internals. WordPress core developers,

however, stated that themes use WordPress core internals. For a theme to be

completely independent, it would need to use none of WordPress’ internal

functions.

For those who accepted that PHP was linked with WordPress in such a way

that the theme inherited the GPL, there was still another possibility: dis-

tributing with two licenses — which is what people often refer to as a “split

license” — or what Matt described as “packaging gymnastics.” While the PHP

in a WordPress theme works with WordPress internal functions, the CSS,

Milestones: The Story of WordPress

185

http://www.fsf.org/news/2008-12-cisco-suit
http://www.fsf.org/news/2008-12-cisco-suit
http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#MereAggregation
http://wordpress.org/support/topic/theme-licensing?replies=22#post-543507
http://themeshaper.com/2008/09/08/the-ethics-of-premium-wordpress-themes/comment-page-1/#comment-8843

JavaScript, and images do not. Therefore, a theme developer can package

their theme with two licenses: one for the PHP and one for the other files.

For theme authors concerned about piracy and copyright, this protected their

intellectual property, while ensuring they followed the letter of the GPL. For

the project, however, this was simply an evasive game that did an injustice to

the spirit of the GPL.

Piracy was a major concern for many theme authors. They worried that any-

one could buy their theme, legally distribute it, and even sell it. Putting a pro-

prietary license on a theme, however, doesn’t stop people from distributing

them. Themes from commercial sellers cropped up on torrent sites all over

the web and were sold on forums such as Digital Point for a cut price. It was

easy, if a user wanted, to download a commercial theme for free (though it

often came loaded with additional links and malware).

Other fears were around making money. How could a business make money

by selling a product that the buyer had a right to give away — or even sell

themselves? Designers and developers were reluctant to distribute with a

license that they thought would damage their business. While Matt suggested

they look into doing custom development, theme sellers were interested in

selling products. It’s more immediately obvious how you can scale a business

selling products than with services. After all, if you don’t factor in support and

upgrades, it’s possible to sell a digital product ad infinitum, creating a rela-

tively passive income for yourself. Time and resources constrain doing cus-

tom design or development for clients.

Revolution was the first theme to be distributed with a 100% GPL license.

Brian Gardner, Revolution’s developer, has a typical theme developer story —

he started as a tinkerer, did some contract work, started to sell themes, and

realized he could make a business out of it.

Developers often came to the project with an implicit awareness of the free

software and hacker ethos; they were comfortable with sharing code. Theme

sellers came through another route: first they were bloggers, then tinkerers,

then designers. As opposed to developers, theme sellers believed they had to

Milestones: The Story of WordPress

186

https://web.archive.org/web/20080915174028/http://www.adii.co.za/2008/02/17/pirated-wordpress-themes-get-a-100-theme-for-only-6/
https://web.archive.org/web/20081004003406/http://www.briangardner.com/blog/revolution-going-open-source.htm

protect their designs. “I and others that were starting to sell themes at that

point wanted to protect our work,” says Brian. “We were almost scared of the

open source concept where the design and images and the code we felt was

all ours and really wasn’t derivative of WordPress itself so we sold things on

a proprietary level.”

Matt’s ThemeShaper blog comment made Brian reconsider his stance. Matt

wrote:

This was the encouragement that Brian needed. He emailed Matt to tell him

he was interested. Before making the switch, Brian flew to San Francisco with

fellow theme author Jason Schuller to talk to Toni and Matt. They discussed

why theme sellers were using proprietary licenses and their fears around

piracy. Matt and Toni made it plain: they were happy for theme sellers to

make money, but themes needed to be GPL. In all of the confusion around the

GPL, the message had become mixed. Theme sellers thought that they were

expected to give themes away, not just that they were expected to distribute

themes matching WordPress’ principles of freedom.

A few days after the meeting, Brian announced that in the future, Revolution

would be GPL. Jason Schuller followed suit.

In the midst of these debates, themes found a new home on WordPress.org.

The theme viewer that had been hosted on themes.wordpress.net was riddled

with problems: themes had security holes, and many of them had obfuscated

code. The system was continually being gamed, there were duplicate themes,

and many contained spam. The theme directory on WordPress.org was set up

to rectify this; it was a place developers could host their themes, and where

users could find quality WordPress themes. In July 2008, the Theme Direc-

I’m happy to give significant promotion to theme designers who stop

fighting the license of the platform which enabled their market to exist

in the first place, just email me.
“

Milestones: The Story of WordPress

187

http://archive.wordpress.org/interviews/2014_03_31_Gardner.html#L36
http://themeshaper.com/2008/09/08/the-ethics-of-premium-wordpress-themes/comment-page-1/#comment-8841
https://web.archive.org/web/20081002042856/http://www.briangardner.com/blog/meeting-with-matt-mullenweg.htm
https://web.archive.org/web/20081003091633/http://www.wpelements.com/2008/09/29/from-seattle-to-san-francisco-and-back/
https://web.archive.org/web/20081002153427/http://www.briangardner.com/blog/revolution-going-open-source.htm
https://web.archive.org/web/20081002153427/http://www.briangardner.com/blog/revolution-going-open-source.htm
https://web.archive.org/web/20081004031211/http://www.wpelements.com/2008/10/01/revolution-is-going-open-source-and-im-going-to-join-him/
https://web.archive.org/web/20080404175227/http://themes.wordpress.net/blog/4421/version-30/#more-4421
https://web.archive.org/web/20080404175227/http://themes.wordpress.net/blog/4421/version-30/#more-4421
http://wordpress.org/news/2008/07/theme-directory/

tory launched on WordPress.org, using bbPress (which, at that time, was not

a plugin), making it easier than ever to distribute free themes.

The WordPress Theme Directory in 2008.

Milestones: The Story of WordPress

188

http://wordpress.org/news/2008/07/theme-directory/
http://milestones.pressbooks.com/files/2015/11/theme-directory-2008.jpg
http://milestones.pressbooks.com/files/2015/11/theme-directory-2008.jpg

Part Five

Love the GPL

A community that grows

Free access for all

CHAPTER 30

Riding the Crazyhorse

According to Ryan Boren, WordPress 2.7 ushered in “the modern era of

WordPress.” It also brought a new face to the WordPress project. WordPress

2.5’s redesign wasn’t well received, though the reasons why weren’t clear.

Was the user interface the problem? Or did people dislike it because they felt

cut out of the process?

Jen Mylo (jenmylo)1 and Matt are old friends. At the time, she ran a usability

testing and design center at a New York agency in conjunction with Ball State

University. The center’s usability studies used the latest eye-tracking tech-

nologies with clients, including television networks such as ABC, NBC, and

MTV. When a TV network missed a usability test window, Jen offered the slot

to WordPress at cost.

The usability review had three stages conducted in two rounds. In Round 1,

they tested WordPress 2.5, gathering “low hanging fruit” recommendations

to improve the admin’s UI. Using the recommendations, the development

team created and tested a prototype (Test1515) to learn whether users’ expe-

riences had improved. In Round 2, they created and tested a more drastic

prototype — dubbed Crazyhorse2 — based on the Test1515 findings.

The research team used three main testing methods in Round 1:

1. Talk-aloud, in which participants are asked to think aloud as they carry

out tasks.

1. At that time, Jen Mylo’s name was Jane Wells. Her name changed in 2013.

2. Unlike WordPress releases, smaller projects, like Crazyhorse, don't always follow the jazz-

musician naming convention.

190

http://profiles.wordpress.org/jenmylo

2. Morae screen activity and video recordings, which allow researchers to

watch participants remotely.

3. Eye-tracking technology to identify granular problems.

Twelve participants tested WordPress’ admin. In Round 1, despite finding

WordPress generally easy-to-use, the researchers identified several prob-

lems, including:

1. Verbs vs. nouns: users found it difficult to conceptualize tasks because

they weren’t action-oriented (Write/Manage). Instead, users perceived

content in a more object-oriented way. (Posts, Pages, Comments, etc.)

2. Users didn’t spend time on the dashboard. They used it as an entry

point for other pages.

3. The write post screen caused problems for users. Tags and categories

appeared below the fold; some participants forgot to add categories

and tags before publication — returning to the post screen to add them

afterward.

4. The comments screen was confusing. Users didn’t understand that

they had to click on a commenter’s name to edit a comment; they

looked in the wrong place when asked to move a comment to spam.

5. The difference between uploading and embedding media in the media

uploader confused users.

Round 1 testing on WordPress 2.5 uncovered minor issues with settings, the

media library, link categories, and tag management. Users also wanted more

control over dashboard modules and the post edit screen.

In addition to a laundry list of small interface issues that presented sim-

ple fixes, such as changing comment author links, we were faced with

larger issues such as the desire for user-determined hierarchies on long/

scrolling screens, ambiguity in the Write/Manage navigation paradigm,

and a disconnect between the act of adding media to a post and the abil-

ity to manage it. — Usability Test Report (PDF)

“

Milestones: The Story of WordPress

191

http://en.blog.wordpress.com/2008/05/20/new-york-usability-testing/
https://github.com/WordPress/book/blob/master/Resources/articles/2008_07_Usability_Report_Crazyhorse.pdf

Minor changes were incorporated into the Test1515 prototype and tested —

though they were so minor that participants didn’t react strongly either way.

The team created Crazyhorse to:

• maximize vertical space,

• reduce scrolling,

• increase access to navigation to reduce unnecessary screen loads,

• enable drag and drop on screens that would most benefit from user

control, and

• redesign management screens to take advantage of natural gaze paths.

Jen and Liz Danzico — who continued to work on WordPress’ usability in

the Crazyhorse project — created the design for the prototype. They sketched

multiple ideas: front-end editing, accordion panes, and a top navigation.

They chose the simplest prototype: a left-hand navigation panel, similar to

Google Analytics and other web apps.

Milestones: The Story of WordPress

192

The dashboard in the Crazyhorse prototype.

WordPress developers built the Crazyhorse prototype in a Subversion

branch, based on the prototype document (PDF), which outlined changes and

rationale. The project focused on user experience and functional develop-

ment, so the prototype retained WordPress 2.5’s visual styles. As in Round

1 testing, participants carried out tasks; talk-aloud, Morae, and eye-tracking

helped assess results.

Most participants preferred Crazyhorse over WordPress 2.5 and every new

feature tested provided actionable information for the next version of Word-

Press.

Participants loved the navigation on the left-hand side of the screen. They

also preferred the object-oriented approach to organization. (Posts, Pages,

Media, etc.)

Milestones: The Story of WordPress

193

http://milestones.pressbooks.com/files/2015/11/crazyhorse-prototype-dashboard.jpg
http://milestones.pressbooks.com/files/2015/11/crazyhorse-prototype-dashboard.jpg
http://lists.wordpress.org/pipermail/wp-hackers/2008-June/020652.html
http://lists.wordpress.org/pipermail/wp-hackers/2008-June/020652.html
http://ma.tt/dropbox/2008/06/wordpress-prototype-1.1.pdf

Participants thought the Crazyhorse dashboard was more useful, and people

appreciated the ability to customize it. They liked QuickPress, though they

weren’t sure if they would use it. With action links beneath comments, users

found it easier to edit and moderate them.

The Write Screen in the Crazyhorse prototype.

The new Write screen had a drag and drop feature — allowing users to decide

which elements got prime screen real estate. They also liked access to post

comments; they felt that the new media uploader — with media library inte-

gration — was a huge improvement.

Milestones: The Story of WordPress

194

http://milestones.pressbooks.com/files/2015/11/crazyhorse-prototype.jpg
http://milestones.pressbooks.com/files/2015/11/crazyhorse-prototype.jpg

The bottom publish bar in the Crazyhorse prototype.

Users panned a publishing bar that floated at the bottom of the screen —

they’d look at the bar a few times before realizing it contained the Publish

button. Some users compared it to a banner ad or thought it part of their

browser.

While Happy Cog and project Crazyhorse did user research, they ended up

with quite different results. For Happy Cog, Liz interviewed community

members and conducted in-person user testing. The Crazyhorse project,

however, used eye-tracking technology. This meant that the testers didn’t

have to rely solely on what participants said; they had insight into what

participants were actually looking at during tests. Additionally, gaze trails

revealed how users navigated the screen with their eyes, allowing testers to

ask: what draws user attention first? Do they miss important UI elements?

Do they understand what they’re seeing?

With the Crazyhorse prototypes a proven success, fleshing out its design was

the next step. When Crazyhorse first merged with trunk, it was a set of live

Milestones: The Story of WordPress

195

http://milestones.pressbooks.com/files/2015/11/crazyhorse-prototype-publish.jpg
http://milestones.pressbooks.com/files/2015/11/crazyhorse-prototype-publish.jpg
https://core.trac.wordpress.org/ticket/7552

wireframes. Design changes had not been introduced to prevent swaying par-

ticipants by color or typeface preferences. By the time the Automattic meetup

in Breckenridge, Colorado, took place in 2008, Crazyhorse was ready for

some color.

At Automattic meetups, small teams work on projects assigned at the begin-

ning of the week. Matt Miklic (MT) (iammattthomas) 3 took on Crazyhorse

with free design rein. In redesigning the admin, Jen and MT produced many

designs. There was a heavy blue variant reminiscent of Shuttle-inspired

WordPress, and a version using the light blue, grays, and orange of Happy

Cog. Eventually, these two main variants melded into a gray color scheme

that WordPress featured until 2013. Andrew Ozz (azaozz) received commit

access to help implement the Crazyhorse changes.

Jen’s community connection differentiated the Happy Cog and Crazyhorse

processes. She kept the community abreast of what was going on. She did

testing as an adjunct to the WordPress project to verify actual usability flaws

with little community involvement. If it had been just a matter of user color

preferences, the Crazyhorse project would have been fruitless. But when test-

ing revealed WordPress’ interface needed to change, community dialogue

ensued. The designs and the usability report were shared on the development

blog. The team surveyed users on navigation options, and the community dis-

cussed issues on the wp-hackers mailing list. When WordPress 2.7 released,

the launch post lists the posts Jen and the developers wrote about the

process. Up to that point, it is the only iteration of the WordPress admin to

have such an information trail.

With the Crazyhorse project, WordPress’ admin changed drastically — twice

in 2008 alone. When screenshots of the changes appeared on community

blogs, the inevitable question was “why are they changing it again?” Word-

Press 2.5’s design hadn’t settled in before another huge change came about

with the implementation of Crazyhorse in 2.7. A UI change meant that users

of varying skill levels needed to relearn how to use WordPress; the growing

3. At that time, Matt Miklic’s name was Matt Thomas. His name changed in 2014.

Milestones: The Story of WordPress

196

http://profiles.wordpress.org/iammattthomas
http://profiles.wordpress.org/azaozz
http://wordpress.org/news/2008/10/the-visual-design-of-27/
http://wordpress.org/news/2008/10/usability-testing-report-25-and-crazyhorse/
http://wordpress.org/news/2008/09/wordpress-27-navigation-options-survey/
http://lists.wordpress.org/pipermail/wp-hackers/2008-October/021944.html
http://lists.wordpress.org/pipermail/wp-hackers/2008-October/021944.html
http://wordpress.org/news/2008/12/coltrane/
http://weblogtoolscollection.com/archives/2008/09/02/first-look-at-wordpress-27/
http://weblogtoolscollection.com/archives/2008/09/02/first-look-at-wordpress-27/

WordPress tutorial community would need to retake every screenshot and

reshoot every video. However, when WordPress users upgraded, the feedback

was positive. Users loved the new interface; they found it intuitive and easy

to use — finally demonstrating that it wasn’t change they had been unhappy

with just nine months earlier — but the interface itself.

The Write Screen in the WordPress 2.7 admin.

WordPress 2.7 brought the WordPress Plugin Repository to the admin

screen. Users no longer had to download a plugin and upload it using FTP.

They could search the plugin directory for the features they needed right from

their admin, and install the plugin with just a few clicks. This made it much

easier for WordPress users to quickly find and install plugins, removing FTP’s

technical barrier to entry.

WordPress’ documentation also improved. In December 2006, Matt posted

to wp-hackers, apologizing for his stance on inline documentation. Inline

documentation patches were committed to core. In WordPress 2.7, PHPDoc-

umentor was added, through a big push by Jacob Santos (jacobsantos) and

Jennifer Hodgdon (jhodgdon) to get WordPress functions documented in the

code. There was also the beginning of an official user handbook.

Milestones: The Story of WordPress

197

http://lorelle.wordpress.com/2008/12/10/wordpress-27-available-now/#comments
http://lorelle.wordpress.com/2008/12/10/wordpress-27-available-now/#comments
http://milestones.pressbooks.com/files/2015/11/2_7_admin.jpg
http://milestones.pressbooks.com/files/2015/11/2_7_admin.jpg
http://lists.automattic.com/pipermail/wp-hackers/2006-December/009812.html
http://core.trac.wordpress.org/ticket/2474#comment:7
http://core.trac.wordpress.org/ticket/2474#comment:7
http://core.trac.wordpress.org/ticket/2473#comment:3
http://lists.wordpress.org/pipermail/wp-docs/2008-October/001769.html
http://lists.wordpress.org/pipermail/wp-docs/2008-October/001769.html
https://profiles.wordpress.org/jacobsantos/
https://profiles.wordpress.org/jhodgdon
http://lists.wordpress.org/pipermail/wp-docs/2009-January/001862.html

After completing the Crazyhorse redesign, Jen joined Automattic to work on

WordPress. At that time, there was a close core developer group who led the

project working in IRC and in Skype. In October 2008, Jen first appeared

on wp-hackers. She brought fresh eyes and a completely new perspective.

Her background in user testing and user experience was largely absent in the

community until she joined the project. “Having someone with actual formal

training in testing and user experience, it was just useful,” says Mark Jaquith.

“It was not just useful then, but it also changed us. Or at least it changed me.

Where I started thinking in these ways as well and becoming better at step-

ping out of my own head.”

This new focus on user testing and user experience meant that the software

would work for everyone who wanted to install it — not just a small set of

users.

Milestones: The Story of WordPress

198

http://lists.wordpress.org/pipermail/wp-hackers/2008-October/021899.html
http://lists.wordpress.org/pipermail/wp-hackers/2008-October/021899.html
http://archive.wordpress.org/interviews/2013_11_22_Jaquith.html#L71

CHAPTER 31

Themes Are GPL Too

As the project transformed, so did the wider economy around WordPress.

When Brian Gardner released the Revolution theme under the GPL in late

2008, theme developers watched with curiosity to see how it would influence

his business, as it seemed counterintuitive to give a product away.

As theme authors watched and waited, commercial theme licensing came to a

head. Toward the end of 2008, 200 themes were pulled from the WordPress

theme repository. A statement was added to the About page of the Theme

Directory that said, “All themes are subject to review. Themes for sites that

support ‘premium’ (non-GPL or compatible) themes will not be approved.”

This meant that the Theme Directory no longer allowed free GPL themes that

linked back to the site of a premium theme seller, whether the themes they

sold were GPL or not.

Premium theme developers and the wider community were annoyed. What

was the problem with theme authors selling themes? The themes hosted on

the Theme Directory were free and complied with the GPL. As so often in

the past, people conflated the actions of WordPress.org with Automattic and

the company came under fire. Some perceived theme removal as a sign that

Automattic didn’t want anyone making money.

The theme sellers were genuinely unhappy. Their themes were pulled without

warning. Many theme sellers saw their free theme releases as a way of sup-

porting the free software community, and spent considerable time ensuring

that they met the theme repository’s standards. They felt as though a rug had

been pulled from underneath them: they’d done their best to comply with

WordPress.org standards, but suddenly it wasn’t enough.

199

https://web.archive.org/web/20090212220653/http://spectacu.la/wordpressorg-pull-200-gpl-themes
https://web.archive.org/web/20090212220653/http://spectacu.la/wordpressorg-pull-200-gpl-themes
https://web.archive.org/web/20081217021620/http://wordpress.org/extend/themes/about
https://web.archive.org/web/20081217021620/http://wordpress.org/extend/themes/about
https://web.archive.org/web/20090315162659/http://www.jeffro2pt0.com/why-were-200-wordpress-themes-removed

An email from Matt made the rounds in the community:

In a podcast on Weblog Tools Collection, Matt discussed his position on the

premium theme market (transcription). In the interview, he describes how,

while updating a friend’s website, he was looking for WordPress themes in

the directory. He found themes with SEO links or linked to SEO sites —

behavior that the Theme Directory had been set up to avoid. The Word-

Press.org team questioned whether they wanted to allow GPL themes that

only served as advertisements for non-GPL themes elsewhere.

In the interview, Matt discussed the distinction between “premium” and

“free” themes, and the importance of correct labeling. When it comes to “pre-

mium” themes, Matt argued that the word “proprietary” makes more sense

than “premium” or even “commercial.” GPL themes, such as Brian Gardner’s

Revolution, could be commercial.

Thanks for emailing me about the theme directory. The other day I

noticed a ton of bad stuff had snuck in like lots of spammy SEO links,

themes whose sites said you couldn’t modify them (which is a violation

of the GPL), etc. Exactly the sort of stuff the theme directory was meant

to avoid.

There were also a few that violated WP community guidelines, like the

domain policy. So since Monday we’ve been clearing stuff out en mass.

If you’re kosher with the GPL and don’t claim or promote otherwise on

your site and your theme was removed, it was probably a mistake. Give

us a week to catch up with the bad stuff and then drop a note.

““

I love what Revolution has done, where they say ‘Ok, so we still sold the

theme, and we still bundle the support and everything like that with it,

but it’s also available as GPL.’ So they’re able to, within the GPL frame-
“

Milestones: The Story of WordPress

200

http://weblogtoolscollection.com/archives/2008/12/19/2hr-interview-with-matt-mullenweg/
http://www.wpsnippets.com/2008/12/transcript-of-wordpress-weeklys-interview-with-matt-mullenweg-december-2008-part-1/

Matt made it clear that theme developers were free to do what they wanted on

their site, but the WordPress project was equally free to do what it wanted on

WordPress.org, and that included whether it should or should not promote

businesses that sold non-GPL WordPress products.

Part of the aim of the theme and plugin repositories is to promote theme

and plugin developers. The project doesn’t want to promote theme develop-

ers who follow the license to get on WordPress.org, but then violate Word-

Press’ license elsewhere. So, theme sellers who sell non-GPL products outside

of WordPress.org aren’t promoted on the site.

The interview delineated what WordPress.org would and would not support.

People got an answer, whether they liked it or not. The storm calmed and

cleared the way for 2009, when businesses started to embrace the GPL.

In the months following the debate, people wondered how to sustain a busi-

ness under the GPL. As the first to embrace the license, Brian Gardner

advised other premium theme sellers. In April 2009, Spectacu.la, the theme

shop that first posted about themes being removed from the repo, announced

that it was going fully GPL. It was followed in June by iThemes and

WooThemes.

In July, Matt announced that he had contacted the Software Freedom Law

Centre. They provided an opinion on theme licensing:

work, create a business and respect the underlying license of the com-

munity that they are building on top of.

…the WordPress themes supplied contain elements that are derivative

of WordPress’s copyrighted code. These themes, being collections of dis-

tinct works (images, CSS files, PHP files), need not be GPL-licensed as a

whole. Rather, the PHP files are subject to the requirements of the GPL

“

Milestones: The Story of WordPress

201

https://web.archive.org/web/20090619172730/http://spectacu.la/were-going-100-gpl/
http://ithemes.com/2009/06/11/ithemes-is-going-gpl/
https://web.archive.org/web/20100309084201/http://www.woothemes.com/2009/06/woothemes-gpled
http://wordpress.org/news/2009/07/themes-are-gpl-too/

WordPress themes are not a separate entity from WordPress itself. As Mark

Jaquith wrote later, “As far as the code is concerned, they form one functional

unit. The theme code doesn’t sit ‘on top of’ WordPress. It is within it, in

multiple different places, with multiple interdependencies. This forms a web

of shared data structures and code all contained within a shared memory

space.”

Following that announcement, more theme sellers adopted the GPL license,

though not all went 100% GPL (i.e., including CSS, images, and JavaScript).

Envato, for example, whose marketplace, ThemeForest, was growing in pop-

ularity, opted for GPL compliance — with two licenses, in which the PHP was

GPL, but the additional files were proprietary.

Themes that are packaged using this split license follow the GPL. The PHP

carries a GPL license and other assets do not. The other elements — CSS,

images, JavaScript, etc. — usually have some sort of proprietary license. This

ensures legal compliance. It aims to protect author rights by removing the

freedoms guaranteed by the GPL — the freedom to use, modify, and dis-

tribute modifications. Users are not free to do what they want with a theme

licensed in such a way because the CSS and JavaScript are just as important

to a theme as the PHP that interacts with WordPress’ internals. But it would

be a number of years before this licensing debate would occur.

while the images and CSS are not. Third-party developers of such themes

may apply restrictive copyrights to these elements if they wish.

Milestones: The Story of WordPress

202

http://markjaquith.wordpress.com/2010/07/17/why-wordpress-themes-are-derivative-of-wordpress/
https://web.archive.org/web/20090819130204/http://blog.themeforest.net/site-news/important-change-to-wordpress-license-takes-effect-today-please-read

CHAPTER 32

Improving Infrastructure

Jen Mylo emphasized usability, as well as encouraged more people to con-

tribute to WordPress. Conversations happened on wp-hackers and trac, but

it wasn’t always obvious how new people could get involved with the project.

Project growth compounded the problem; it wasn’t easy for a new contributor

to understand what was going on, nor how to contribute. Jen wrote about

how to get involved, and the development blog announced patch marathons

and bug hunts.

Jen brought more structure to the project: she reinstated weekly develop-

ment chats with agendas and prevented discussions from disappearing down

rabbit holes. When she joined the project, core developers communicated

in two main ways: via the IRC chat room and by private Skype channel.

Skype’s drawback is that it’s closed — it doesn’t create opportunities for

other people to get involved. Also, because the main blog at the time, wpde-

vel.wordpress.com, was on WordPress.com and not WordPress.org, it didn’t

feel official. There had been little project management; developers wrote code

and pushed it out when it was ready.

At this time, Matt stepped back. Ryan Boren led development, while Jen

stepped up to project-manage the software and took a leadership role within

the community.

She tried to address communication fragmentation within the project. By

2009, project communication happened in different places: trac, wp-hackers,

the #wordpress-dev IRC chat room, wpdevel.wordpress.com, and the Word-

Press.org development blog. Jen highlights the state of each of WordPress’

primary communication channels: the #wordpress-dev channel had become

mostly inactive; wp-hackers had thousands of subscribers, but was often

203

http://wordpress.org/news/2009/03/contributing-to-wordpress-part-i-development/
http://wordpress.org/news/2009/03/contributing-to-wordpress-part-i-development/
http://wordpress.org/news/2009/04/the-super-awesome-wordpress-24-hour-has-patch-marathon/
http://wordpress.org/news/2009/10/upcoming-bug-hunts/
http://make.wordpress.org/core/page/121/
https://wordpress.org/news/2009/05/ideas/

just a troubleshooting forum; the development blog was used for official

announcements only; the wpdevel.wordpress.com blog (directed now to

http://make.wordpress.org/core) housed team progress updates; Trac had

become an unworkable mess with hundreds of irrelevant tickets; and the

ideas forum contained many highly voted, but irrelevant threads.

Communication improvements were discussed in a forum thread. Sugges-

tions included: a place other than trac for people to raise things; a way to

make it easier for people to write automated unit tests, allowing the com-

munity to vote on ideas; greater documentation integration for WordPress

and trac; adopting P2 for discussion; and using BuddyPress — a social-

networking plugin that is a sister project to WordPress — on WordPress.org.

Amid suggestions were complaints: it was noted that no one official read the

ideas forum, timezone differences made IRC meetups difficult to attend, and

too many communication channels existed — far too many for people to keep

up with. Some people complained about community governance and a lack of

transparency. As Jen observed, “Your post just proves the point that commu-

nication is an issue. I would not say that WP lacks a clear direction, I would

say that it simply hasn’t been communicated properly.”

Jen wanted to clarify how project decisions were made. It wasn’t uncommon

for people to toss feature requests into IRC chat. People needed to know what

each communication channel was for and understand the correct channels to

ask questions and request features.

Much of the development discussion had shifted from wp-hackers to trac.

Trac’s main benefit is that it focuses discussion directly on the bug, feature,

or enhancement at hand. That said, as more and more people started using it,

it became — just like wp-hackers — susceptible to intractable, bikeshed dis-

cussions.

Smilies were at the heart of one such recurring discussion. In 2009, a ticket

requested replacing WordPress’ smilies with Tango/Gnome smilies. Ryan

Boren committed the patch.

Milestones: The Story of WordPress

204

http://wordpress.org/news/
http://make.wordpress.org/core/
http://wordpress.org/support/topic/ideas-forumcommunication-channels?replies=55
http://wordpress.org/support/topic/ideas-forumcommunication-channels/page/2?replies=55#post-1071517
https://core.trac.wordpress.org/ticket/10145
https://core.trac.wordpress.org/changeset/11685
https://core.trac.wordpress.org/changeset/11685

The smilies landed first on WordPress.com, which receives daily codebase

updates. The feedback was negative and reaction on the trac ticket spiralled;

contributors were unhappy that smilies had been changed without discus-

sion. They argued that WordPress had changed users’ content, without giving

them any say in it. The discussion spread from trac tickets to community

blogs. Some wanted a public poll to aid the decision.

Ryan Boren eventually reverted the change, saying: “Back to the prehistoric

smilies that everyone complains about but evidently likes better. I was a

fool for not appreciating the explosive topic that is smilies, my bad.” 1

As well as trying to fix communication problems, some worked on improving

documentation. To commit a patch in WordPress core, there is a review

process. The WordPress Codex, on the other hand, is the opposite: any con-

tributor can publish documentation immediately. This is a low-friction way

to create documentation, but because it lacked rules and structure, it became

difficult to navigate; pages fell out of date, and — despite the efforts of the

documentation team — it became a mess. User documentation is packaged

up with developer documentation, often on the same page, and for many

WordPress users and developers, the Codex became less useful. In the mean-

time, WordPress tutorial blogs proliferated. In the absence of good, official

documentation, people went elsewhere.

The Handbook Project sought to create references for theme and plugin

development. The team launched a trac instance and wordpress.com blog

to manage the handbooks. It can be difficult to recruit long-term help on

documentation. With the low-entry barrier, many people make their first

WordPress contribution through documentation, but as they figure out the

project’s contours they move on to contributing to core. The original hand-

book project was passed between different people, and by 2014 it was near

completion.

1. The smiley debate was reignited in 2014, when WordPress.com updated its emoticons and a pro-

posal was made to produce high-dpi smilies for use on retina displays. Once again, people had strong

opinions, as seen across community blogs. As of 2015, the smilies are still not updated.

Milestones: The Story of WordPress

205

http://en.forums.wordpress.com/topic/new-smilies?replies=84
https://core.trac.wordpress.org/ticket/10145#comment:18
http://wptavern.com/nothing-to-smile-about
http://wptavern.com/nothing-to-smile-about
https://core.trac.wordpress.org/ticket/10145#comment:28
http://lists.wordpress.org/pipermail/wp-docs/2009-August/002034.html
http://docs.trac.wordpress.org/
http://wphandbook.wordpress.com/
http://wphandbook.wordpress.com/
https://core.trac.wordpress.org/ticket/24970
http://wptavern.com/wordpress-smiley-wars-will-core-adopt-new-emoticons

In mid-2009, WordPress dropped the long-term security branch — some-

thing Mark Jaquith had maintained since 2006. The plan was to maintain

it until 2010. During that period, however, there were major changes to

WordPress’ security. Backporting those changes into the 2.0.x branch meant

complex rewriting that could have introduced new bugs or instability. The

developers found that few people were on 2.0; new feature proliferation

meant that people upgraded more readily. The legacy branch continued until

just six months shy of its 2010 target, and was deprecated in July 2009.

Long-term support branch (LTS) requests remain — specifically from big

companies that use WordPress as a CMS — though it’s unlikely that Word-

Press will ever start a new branch. Matt wrote to wp-hackers:

Rather than supporting an LTS branch, the project focuses on easy updates

and compelling features that entice users to upgrade. This iterative process

has continued to improve throughout the project’s history, from Matt’s first

mention of upgrades in his 2006 State of the Word address, to automatic

updates introduced in WordPress 3.7. This approach focuses development on

keeping users secure, rather than trying to maintain older software branches.

Not backporting is a conscious decision. I would rather invest 100 hours

in backward compatibility in a new version than 2 hours in backporting

a fix to an obsolete version of WordPress. Plus, as noted by everyone

else, backporting was often impossible because it wasn’t one or two line

fixes, it was architecture changes that would touch dozens of files. The

LTS was actually less stable with these “fixes” backported because it had

almost no one using it.

“

Milestones: The Story of WordPress

206

http://wordpress.org/news/2009/07/the-wordpress-2-0-x-legacy-branch-is-deprecated/
http://lists.wordpress.org/pipermail/wp-hackers/2010-June/032447.html
http://lists.wordpress.org/pipermail/wp-hackers/2010-June/032483.html

CHAPTER 33

Meeting in Person

In December 2009, the core team — Matt, Mark, Ryan, Westi, Andrew, and

Jen — met in Orlando, Florida. Despite working together on the project for

years, it was the first time that some of them were meeting face to face. Work-

ing from the Bohemian Hotel lobby, they discussed live project issues, includ-

ing “the merge, canonical plugins, the WordPress.org site, community stuff,

and all the other things that are important but that we never seem to have

time to address.” As well as discussing WordPress’ vision and goals, they had

a trac sprint that edged them closer to shipping WordPress 2.9.

From left to right: Mark Jaquith, Jen Mylo, Andrew Ozz, Peter Westwood, Matt Mullenweg, Ryan Boren.

They posted results to the WordPress news blog, highlighting the breadth of

the discussion:

207

https://wordpress.org/news/2009/12/intermission/
http://milestones.pressbooks.com/files/2015/11/1st-core-meetup.jpg
http://milestones.pressbooks.com/files/2015/11/1st-core-meetup.jpg
http://wordpress.org/news/2009/12/core-team-meetup-results/

Meeting in person allowed them to bounce ideas off of one another and to get

work done. Jen recalls:

Meetups continue to be part of core development, from small and focused

ones with the core team to large gatherings involving the whole community.

Members meet at WordCamps, or at dedicated meetups to do code sprints

and to discuss the general project and development direction. They provide

an opportunity for people to discuss issues without the barrier of a screen,

and also to socialize, hang out, and get to know one another better. When

community members meet, they generate new ideas and thrash out old ideas

in detail. Meetups aren’t, however, without side effects. Meeting in person, by

its nature, excludes everyone who isn’t physically present. In a free software

project, it’s important to balance offline meetups with online activity, which

allows everyone to have a say.

Direction for the coming year(s), canonical plugins, social i18n for plug-

ins, plugin salvage (like UDRP for abandoned plugins), WordPress/MU

merge, default themes, CMS functionality (custom taxonomies, types,

statuses, queries), cross-content taxonomy, media functions and UI,

community “levels” based on activity, defining scope of releases, site

menu management, communications within the community, lessons

learned from past releases, mentorship programs, trac issues, word-

press.org redesign, documentation, community code of conduct.

“

We sat in these red velvet chairs in the bar of the Bohemian Hotel in

Orlando, and when it was time to eat we would go into the dining room

and we would eat. And we’d come back and we’d work, and we were

on our laptops and actually going through trac as well. And doing bug

scrubs, but then we would stop and we would have just conversations

and we’d go outside maybe or we’d go out to lunch. And so we kind of

mixed it up, and it was just so helpful. Both in terms of just getting to

know each other better, and the actual work.

“

Milestones: The Story of WordPress

208

The canonical plugins project was discussed at the first core meetup. The

WordPress plugin repository was growing, and many plugins did the same

thing. Large, complex plugins can transform WordPress, though some plug-

ins had poor code quality, while some were out of date. Sometimes, a devel-

oper drops a plugin, leaving users without support or updates — a big prob-

lem if a user relies heavily on the feature. The core development team felt that

some plugins warranted a similar process to the core development process,

where a group of coders lead a plugin’s development, deciding what goes

in and what doesn’t, in a similar way to how WordPress, BuddyPress, and

bbPress are developed. Rather than having ten SEO plugins, or ten podcast-

ing plugins, for example, there would be one canonical plugin, sanctioned by

core with its own official development team.

WordPress’ core development team supported the proposal, which Jen wrote

about on the blog; the strong relationship between WordPress core and

canonical plugins would ensure plugin code was secure, that they exemplified

the highest coding standards, and that they would be tested against new ver-

sions of WordPress to ensure compatibility.

Early discussions focused on what to call this cluster of plugins. The commu-

nity voted and decided on “Core plugins.” Then, a team got to work, which

included Westi, Aaron Campbell (aaroncampbell), Austin Matzko (filosofo),

Stephen Rider (Strider72), and Pete Mall (PeteMall).

Health Check, which checks a website for common configuration errors and

known issues; PodPress, a popular podcasting plugin which had been aban-

doned; and a proposed plugin to shift the post by email functionality from

core into a plugin were the first canonical plugins.

But plugin developers weren’t so enthusiastic. They liked having ownership

over their own plugins. The WordPress project was accused of trying to stifle

the growing plugin market. Discussions continued among developers about

how core plugins might influence them. Justin Tadlock said:

Milestones: The Story of WordPress

209

http://wordpress.org/news/2009/12/canonical-plugins/
http://wordpress.org/news/2009/12/canonical-plugins/
http://profiles.wordpress.org/aaroncampbell
http://profiles.wordpress.org/filosofo
http://profiles.wordpress.org/Strider72
http://profiles.wordpress.org/PeteMall/
https://wordpress.org/plugins/health-check/
http://onefinejay.com/2010/01/10/shackling-a-free-market-wordpress-canonical-plugins/comment-page-2#comment-7578

User feedback on the thread was positive: any help sifting through the mass

of WordPress plugins was a benefit. Why should users have to sift through

fifty contact form plugins when there could be one, officially sanctioned plu-

gin that could serve 80% of users? The project didn’t intend to kill off the

plugin market, and Mark Jaquith tried to calm developer fears: “Core plugins

will be safe and stable,” he wrote, “but limited in scope and probably a little

bit boring and not completely full-featured.”

The core plugins project, however, was beset by other problems. While there

was potential for success, they lacked the tools to work effectively across

a broad group of plugins. “We didn’t have the toolset at the time to do it

properly,” says Aaron Campbell, “without stepping outside of the WordPress

ecosystem quite a bit and relying on something like a GitHub or something

like that, which we prefer not to rely on for things that are really kind of the

core of WordPress.”

To properly manage core plugins, the WordPress project’s infrastructure

would have to change. When the plugin repository was built, it was designed

with one author per plugin; developer collaboration tools didn’t exist. (While

the plugin repository has become more flexible — it’s now possible, for exam-

ple, to have multiple plugin authors — traditional developer collaboration

tools are still lacking.) A system to submit contributions, discuss and modify

patches, and merge them are useful for multiple developers working on a

single plugin. To develop WordPress, tools have been built around the Sub-

version repository to make that possible, and the modified trac instance

There’s been some great discussion here, but it seems a little one-sided.

Most of the people leaving comments are developers. What would make

the conversation much better would be to hear from more end users.

I will refrain from sharing my opinion until I can gauge what a larger

portion of the user base is feeling because, quite frankly, that’s the por-

tion of the community that influences my opinion the most.

““

Milestones: The Story of WordPress

210

http://onefinejay.com/2010/01/10/shackling-a-free-market-wordpress-canonical-plugins/comment-page-2#comment-7589
http://archive.wordpress.org/interviews/2014_06_05_Campbell.html#L32

encourages collaboration. But each core plugin would need a replica of the

infrastructure that WordPress uses itself, and it became obvious that the plan

was untenable.

On top of this, many of the developers were burned out from WordPress 2.9

(and taking a break with the promise of a major release cycle in WordPress

3.0). They didn’t have the time or energy to build core plugins, as well as

develop the core product itself. Despite the coverage the project got across

the community, and despite the initial burst of energy, the canonical plugins

project eventually fizzled out.

Milestones: The Story of WordPress

211

CHAPTER 34

Update Notifications Redux

Community blogs became important gathering spaces for those who wanted

to communicate outside the core project’s official channels. One of these was

WP Candy, a blog started by Michael Cromarty and later taken over by Ryan

Imel. Another was WP Tavern, run by Jeff Chandler. WP Candy and WP Tav-

ern became places where the community could share and discuss ideas, as

well as vent outside the project’s central channels — and over time, both have

hosted many major community debates.

One of the biggest debates was around data collection.

When WordPress 2.3 shipped with update notifications, the initial debate

quieted down. Lynne Pope (Elpie) reopened the discussion in 2009 on WP

Tavern’s forums, and also posted to wp-hackers. Lynne pointed out that Matt

had said data collection would be reviewed in WordPress 2.5. She discussed

URL collection and asked whether WordPress had a need to collect them,

suggesting that an anonymous identifier could replace the blog URL. In the

discussion thread on WP Tavern, Lynne went further into her concerns:

She referenced WordPress.org being cracked in March 2007; if someone

were to crack WordPress.org again, they would have access to all the data.

wordpress.org is not a legal entity so there is nobody to sue if data is mis-

used. You can’t sue a community. There is no disclosure about what data

is collected or how it will be used. People are just supposed to trust that

volunteers working on an open source project can be relied upon to keep

personal data private?

“

212

https://profiles.wordpress.org/Elpie
http://lists.wordpress.org/pipermail/wp-hackers/2009-December/029083.html
http://wordpress.org/news/2007/03/upgrade-212/

Since much of the data is freely available on the internet, many were uncon-

cerned about the collection, but Lynne pointed out that what isn’t readily

available is the totality of that information (WordPress version, PHP version,

locale setting, plugin information, and the website’s URL as a package). In

2009, people were growing more concerned about internet privacy. People

signed up for social media services that collected huge amounts of data,

used to target advertising. A 2009 paper reported that personally identifiable

information could be leaked from social networks (PDF) and third parties

could link that data with actions on other websites. At the same time, internet

users were becoming more vocal about privacy concerns. In February 2009,

for example, when Facebook changed its Terms of Service to say that user

data would be retained by Facebook even if the user quit the service, the com-

pany faced an outcry and was forced to backtrack.

In the midst of these privacy concerns, WordPress was a bastion of the inde-

pendent web. If a person has privacy concerns, they can avoid using social

media; but they can create a website using something like WordPress, on

their own server, with complete control over their own data. For some peo-

ple in the community, data collection tarnishes this independence. There is

potential for abuse, and even if there is trust in the people who have access

to this data now, there’s no guarantee that others with access to the data will

use it in the same way in the future.

Mark Jaquith, who had originally opposed the data collection, responded to

Lynne on wp-hackers:

The more I thought about it, the more my knee-jerk objections faded

away. Your server is doing an HTTP request, so the server knows your

server’s IP address. You can figure out what blog domains are hosted on

that IP with a search on Bing or several other search engines. So if Word-

Press.org really wanted to know your URL, it could find it. Again, that’s

just based on the IP address, which you HAVE to send for HTTP to work.

“

Milestones: The Story of WordPress

213

http://conferences.sigcomm.org/sigcomm/2009/workshops/wosn/papers/p7.pdf
https://www.facebook.com/notes/facebook/update-on-terms/54746167130
http://lists.wordpress.org/pipermail/wp-hackers/2009-December/029089.html
http://lists.wordpress.org/pipermail/wp-hackers/2009-December/029089.html

While wp-hackers saw some of this discussion, it mostly took place on WP

Tavern. The discussion thread generated 291 responses — the most popular

post in the forum’s lifespan. It was also heavily discussed on Weblog Tools

Collection under a post from Jeff Chandler, titled “Is WordPress spyware?”

The issue was reopened on WordPress trac, and was proposed for the devel-

opment chat agenda. Some community members felt that their privacy con-

cerns were valid, and that they weren’t being taken seriously. In the thread,

Matt posts that WordPress.org only stores the latest update sent, but no his-

torical data. Historical data is only held in aggregate so that statistics can be

provided for plugin and theme developers.

Mark joined the discussion on WP Tavern to share some of the reasons he

changed his mind:

• An IP address, which must be sent by the server, is not significantly

more anonymous than a URL.

• URLs allow WordPress to verify the identity of a blog. When URLs are

hashed it’s no longer possibly to verify the blog identity. Without

proper verification, systems that involve plugin rankings based on

usage or popularity are open to manipulation and abuse.

• The privacy policy was updated to cover api.wordpress.org.

The core developers stuck with their decisions, not options philosophy; no

option was added to turn off update notifications. By the time it was raised

again, in 2009, the project could apply another one of its philosophies to

making the decision — the 80% principle: if 80% of users find something use-

ful, then it belongs in core; if not, then it belongs in a plugin. A number of plu-

gins were created to disable update notifications, but only a fraction of people

used them. A clear notification of a website or plugin update was more impor-

If your URL is discoverable, and your IP address has to be sent, with-

holding the URL doesn’t actually get you more privacy, ultimately.

Milestones: The Story of WordPress

214

http://weblogtoolscollection.com/archives/2009/12/10/is-wordpress-spyware/
http://weblogtoolscollection.com/archives/2009/12/10/is-wordpress-spyware/
https://core.trac.wordpress.org/ticket/5066#comment:23
http://make.wordpress.org/core/2009/12/10/suggest-agenda-items-for-dec-17th-dev-ch/#comment-1030
http://make.wordpress.org/core/2009/12/10/suggest-agenda-items-for-dec-17th-dev-ch/#comment-1030
https://wordpress.org/plugins/search.php?q=core+update+notification

tant than adding a preference to satisfy a small number of people within the

WordPress community.

WordPress continues to collect data about sites, which is used in a number

of ways. The project, for instance, can make informed decisions about which

technologies to support. Using the data, it was possible to tell that, in 2010,

around 11% of WordPress users were using a PHP version below 5.2, and

that fewer than 6% of WordPress users were using MySQL 4.0. Using that

information, the development team was confident about dropping support

for PHP 4.0 and MySQL 4.0. Browser usage data also helped in the decision

to deprecate support for Internet Explorer 6.

Data is helpful when there is a security issue with a plugin, too. The project

can detect how many sites have a plugin active and can determine the severity

of the issue. In the case of a security issue in a popular plugin, web hosts

are informed so that sites with insecure versions of a plugin can be blocked

at the host level. Update notifications were also an important stage in the

road toward automatic updates for minor releases, which were introduced in

WordPress 3.7.

Milestones: The Story of WordPress

215

http://wordpress.org/news/2010/07/eol-for-php4-and-mysql4/
http://wordpress.org/news/2010/07/eol-for-php4-and-mysql4/

CHAPTER 35

The WordPress Foundation

Throughout this time, Automattic held WordPress’ trademarks. Trademarks

are an important asset to companies, to free software projects, and to anyone

who has a product to protect. A trademark represents a project’s reputation,

and is a symbol of official endorsement. Free software licenses protect the

terms under which a program can be distributed, but they don’t grant trade-

mark rights. In a 2009 article on trademarks in open source projects, Tiki

Dare and Harvey Anderson report that of the 65 licenses endorsed by the

Open Source Initiative (OSI), 19 don’t mention trademarks, 19 prohibit trade-

marks in publicity, advertising, and endorsements, and a further 26 explicitly

exclude trademark rights.

Trademark law protects a piece of code’s marks and branding — not the code

itself. A software project’s code exists in its community’s commons, but the

trademarks do not. The growing issue of free software trademarks was con-

ceded in 2007 with GPLv3. One clause states that the license may be sup-

plemented with terms “declining to grant rights under trademark law for use

of some trade names, trademarks, or service marks.” This reflects that free

software communities accept that a trademark is not necessarily linked to the

software.

Users and consumers associate a trademark with the original project; the

trademark denotes trust, quality, and dependability. It also helps to verify

identity: if you’re dealing with a company bearing the Widget Company logo,

then you expect to be dealing with Widget Company. This matters in the

free software community as much as in the corporate world. A free software

project’s trademark carries certain assumptions: that the project maintainers

and developers are either involved with or officially endorse that product

216

http://www.ifosslr.org/ifosslr/article/view/11/37
http://www.ifosslr.org/ifosslr/article/view/11/37
http://opensource.org/licenses
http://www.gnu.org/copyleft/gpl.html

or service, and that it meets quality standards. “Being the source of code

arguably matters more than source code in an open-source business,” write

Dare and Anderson. “The code is easily replicated, as it is open, but the trust

associated with source (or origin) is not replicable. Trademarks are all about

source.”

Automattic registered the WordPress trademarks in 2006, but some contrib-

utors — who had helped build the software or started their own local com-

munities — felt that they had as much right to the trademarks as Automattic.

Some community members believed that the community owned the code-

base and thus should own the trademarks, not the corporate entity. What

Automattic did have, and the community at large didn’t, was the structure

and money to protect the trademarks from abuse and dilution. This often

came at the cost of good relations with the community.

Automattic had always intended to place the trademarks with the WordPress

Foundation, which is a separate entity from the company. Automattic acted

as a short-term trademark guardian, protecting the trademarks until another

body could take over. This was made clear to the company’s investors at the

outset. Phil Black, one of Automattic’s first investors, recalls knowing that

the trademarks would not remain with the company. “It wasn’t like Matt was

proposing something to us where we felt like a significant asset was being

lost,” says Phil. “A significant asset was being transferred to the right third

party as we thought that it should have been.”

The Foundation counterbalances Automattic, providing checks and balances

should Automattic ever be acquired. “Let’s say Evil Co. ran Automattic,” says

Matt, “and Evil Co. only cares about making money. The balance between

WordPress.org and the WordPress Foundation and WordPress.com is such

that I think even Evil Co. would do the right thing with regard to the commu-

nity and the code and everything.”

The Foundation took longer to set up than expected; various factors needed

to be in place before it launched. Before the trademarks could be transferred,

they needed to be properly secured and protected. Toni Schneider managed

Milestones: The Story of WordPress

217

http://archive.wordpress.org/interviews/2014_04_15_Black.html#L49
http://archive.wordpress.org/interviews/2014_04_17_Mullenweg.html#L355
http://archive.wordpress.org/interviews/2014_04_17_Mullenweg.html#L355

this during his early days at Automattic. It also took a long time to register the

non-profit with the IRS. Because non-profits are tax-exempt, it can be diffi-

cult to set one up. Matt wanted the Foundation to hold the trademarks, but

simply holding trademarks is not considered a legitimate non-profit activity.

Applications sent to the IRS were denied for several years. In the end, the

WordPress Foundation received 501(c)(3) status as an organization charged

with educating people about WordPress and related free software projects.

The WordPress Foundation’s website states its mission:

The WordPress Foundation was launched in January 2010. Automattic

transferred the trademarks later that year in September. As part of the trans-

fer, Automattic was granted use of WordPress for WordPress.com, but not

for any future domains. Matt was granted a license for WordPress.org and

WordPress.net. As well as transferring the trademarks for WordPress itself,

the company also transferred the WordCamp name. As with WordPress itself,

this protects WordCamps as non-profit, educational events in perpetuity.

The community was pleased with decoupling WordPress the project from

Automattic the company. It gave people more confidence that Automattic

was not out to dominate the WordPress commercial ecosystem. Despite some

initial confusion about how people were allowed to use the WordPress trade-

mark, eventually it settled down.

The point of the foundation is to ensure free access, in perpetuity, to the

software projects we support. People and businesses may come and go,

so it is important to ensure that the source code for these projects will

survive beyond the current contributor base, that we may create a stable

platform for web publishing for generations to come. As part of this mis-

sion, the Foundation will be responsible for protecting the WordPress,

WordCamp, and related trademarks. A 501(c)3 non-profit organization,

the WordPress Foundation will also pursue a charter to educate the pub-

lic about WordPress and related open source software.

“

Milestones: The Story of WordPress

218

http://wordpressfoundation.org/
http://ma.tt/2010/09/wordpress-trademark/
http://ma.tt/2010/09/wordpress-trademark/#comments

In the same year, both Matt and Automattic explored different ways to sup-

port the WordPress project. Matt set up another company, Audrey Capital,

which is the home for his investments. Audrey Capital allows him to hire

developers for tasks that he doesn’t have time for, and this separation offers

some balance between people who contribute to WordPress and who aren’t

employed at Automattic.

“The idea was to kind of have five people at Automattic working on Word-

Press core, five people at Audrey working on WordPress core, and then I’ll

try to get the different web hosts to each hire a person or two each, and so

there’ll be between the three, fifteen-ish people, full-time on WordPress.org,”

says Matt.

Developer Samuel Wood (Otto42) was Audrey Capital’s first employee. Matt

and Otto share a love for barbecue. Otto was looking for someone to sponsor

a BBQ team at the international barbecue festival in Memphis, Tennessee.

Knowing Matt liked barbecue, Otto asked him to sponsor the team. Matt said

yes and went to Memphis for the festival. The following year, Matt spon-

sored the group again, and eventually asked Otto to work for him at Audrey.

Andrew Nacin — who would go on to become a lead developer of WordPress

— joined Otto, and since then, Audrey has hired three more people to work

on the WordPress project.

At the same time, changes at Automattic would have an ongoing influence on

the project. By August 2010, the company had more than sixty employees.

The sheer number of people meant that the completely flat structure was

becoming harder to manage. The company moved to a team structure in

which groups of people worked on different projects: themes, VaultPress, and

support, for example. One of the newest teams at Automattic was the Dot Org

Team, dedicated to working on the free software project. Ongoing members

were Ryan Boren and Andrew Ozz, WordPress lead developers; Jen Mylo,

formerly WordPress’ UX lead responsible for the Crazyhorse redesign; and

Andrea Middleton, who managed WordCamps.

Teams are fairly fluid inside Automattic, and people come to the Dot Org

Milestones: The Story of WordPress

219

http://archive.wordpress.org/interviews/2014_04_17_Mullenweg.html#L379
https://profiles.wordpress.org/otto42

Team to work on the WordPress project, often bringing with them the knowl-

edge and skills that they’ve developed elsewhere in the company. Employees

can also do a “Dot Org rotation,” which means that they work on the Word-

Press project for a release cycle.

The Dot Org Team has helped mitigate the effects of hiring from the commu-

nity. Seven out of the first ten Automattic employees came from the Word-

Press community, and over the years, the company has hired a number of

contributors. While this has been good for individuals and for Automattic,

it hasn’t always had a positive effect. When WordPress.com was almost the

sole focus, contributors worked on the core project, which benefitted both

the project and Automattic. Some early contributors who became Automattic

employees found themselves spending less and less time on the project. Mark

Riley, who was employed to do support, found that he had no time to help out

in the WordPress.org support forums. For other people, this has happened

slowly, over time, as Automattic has expanded into other products, while the

core project evolved in a different direction — one with governance and struc-

tures, wildly different from the days of throwing up patches, heated discus-

sions on wp-hackers, and waiting for Matt or Ryan to commit code.

The Dot Org Team has formed a bridge between the company and the com-

munity, ensuring that there are people within Automattic whose attention is

100% on growing the WordPress product and project. In 2014, the number of

people working on WordPress from Automattic expanded even further. The

Dot Org Team split into two: a developer team that works on the core soft-

ware and on WordPress.org (Team Apollo), and a community team that is

focused on events and the community (Team Tardis).

Milestones: The Story of WordPress

220

CHAPTER 36

WordPress 3.0

WordPress 3.0 arrived in 2010, bringing change not only to the software, but

to the development process and project structure. Commit access was opened

up and all these changes shaped how the project works today. WordPress’

philosophy — deadlines are not arbitrary — was seriously challenged.

In January 2010, Dion Hulse (dd32) received commit access during the 3.0

release cycle. In the post announcing Dion’s access, Matt outlines a new goal

for the project:

This new approach and decoupling commit access from the lead developer

role signaled a big change when every patch went through either Matt or

Ryan. There was a need to extend trust to contributors, without necessarily

giving them leadership roles within the project. While there were no formal

rules, several contributors received commit access: Ron Rennick

(wpmuguru), focused on multisite, Dion focused on HTTP, and Daryl Koop-

ersmith (koop) worked on front-end development, while Andrew Nacin

(nacin) was the codebase generalist.

One of the goals for the team in 2010 is to greatly expand the number

of people with direct commit access, so the emphasis is more on review

and collaboration. Right now commit access is tied up with being a “lead

developer,” of which we’ve always found a small group of 3-5 works best,

but now we want commit to be more a recognition of trust, quality, and

most importantly activity, and something that can dynamically flow in

and out as their level of commitment (har har) changes and decoupled

from the “lead dev” role.

“

221

http://profiles.wordpress.org/dd32
https://make.wordpress.org/core/2010/01/12/dd32-whatcha-gonna-do/
https://profiles.wordpress.org/wpmuguru
https://profiles.wordpress.org/koop
http://profiles.wordpress.org/nacin

As well as a symbol of trust, extended commit access meant that tickets and

bottlenecks were cleared quickly. When lead developers got distracted by life

and work, Ryan Boren carried the load. New committers reviewed and com-

mitted tickets.

April 13, 2010 was WordPress 3.0’s release date. Similar to prior releases

— despite having a deadline — development focused on scope and headline

features, rather than meeting the date. Three main features were defined in

the scope chat: merging WordPress MU with WordPress, menus, and a new

default theme to replace Kubrick.

Merging WordPress MU with WordPress came for several reasons: Word-

Press MU was difficult to maintain, 95% of the code was the same as the

main WordPress codebase, and Donncha had to manually merge new fea-

tures post-release. Because WordPress MU hadn’t gained attention from plu-

gin developers, it felt separate from the main WordPress project. To give

users a clean upgrade path, WordPress MU merged with WordPress.

Ron Rennick, a longtime MU user, assisted with the merge. He and Andrea,

his wife, had used WordPress MU for years for their homeschooling blogging

network. His script turned a WordPress install into a WordPress MU install.

He reverse engineered his script to bring MU functionality into WordPress,

ensuring a way to convert a single WordPress install to a Multisite install.

Ron ran a diff 1 against the WordPress MU code, looked for differences in the

codebase, and merged them into WordPress core. Ryan Boren and Andrew

Nacin cleaned up the code. Ron also merged features absent from WordPress

MU in plugins, such as domain mapping — a feature originally developed by

Donncha.

Plan A was to allow users to upgrade to WordPress Multisite with one click.

“The reason we decided not to do that,” says Ron, “is that a lot of the shared

hosts would not have been happy if their users could just take any WordPress

install, click a button — without actually knowing anything about what was

1. A diff is a comparison tool that compares the difference between two files.

Milestones: The Story of WordPress

222

https://irclogs.wordpress.org/chanlog.php?channel=wordpress-dev&day=2010-01-07#m51679
https://core.trac.wordpress.org/ticket/11644
http://wordpress.org/plugins/wordpress-mu-domain-mapping/
http://archive.wordpress.org/interviews/2014_04_05_Rennick_R.html#L76

going to happen — and convert it over to Multisite. The decision was made to

actually make it a physical process that they had to go through.” To change

a WordPress installation into Multisite, WordPress users have to edit wp-

config. They need basic technical knowledge.

Terminology was one of the biggest headaches surrounding the merge. In

WordPress 3.0, the project decided to move away from the word “blog,” and

instead refer to a WordPress installation as a “site.” More and more peo-

ple were using WordPress as a CMS, so the “site” label felt more appropri-

ate. However, in WordPress MU, the parent — example.org — is a site, while

the subdomain blog.example.org is a blog. With WordPress MU and Word-

Press merging, which one was the site? An individual WordPress install, or

a WordPress install that hosted many blogs? WordPress MU became Word-

Press Multisite, but that wasn’t the end of it.

To complicate matters further, WordPress MU had a function

get_site_option, which gets options for the entire network, and

get_blog_option which gets options for individual sites. The functions,

therefore, don’t relate entirely to the user interface. That was just one of the

functions that caused problems, as Andrew Nacin noted.

Custom post types and custom taxonomies were two big changes in Word-

Press 3.0. The default content types in WordPress are posts, pages, attach-

ments, revisions, and nav menus (from WordPress 3.0), and the default

taxonomies are categories and tags. In WordPress 3.0, custom post types and

taxonomies were given a user interface. So instead of being restricted to just

posts and pages, developers could create themes and plugins that had com-

pletely new types of content for users, such as testimonials for a business site

or books for a book review website. This opened up totally new avenues for

theme and plugin developers, and those building custom sites for clients.

Menus were the big user-facing feature for WordPress 3.0. At the time, it

wasn’t easy for people to add navigation menus to their websites. Menu plu-

gins were popular, so much so that it was obvious that the feature met the

80/20 rule. (Would 80% of WordPress users take advantage of the feature?

Milestones: The Story of WordPress

223

http://nacin.com/2010/03/25/terminology-nightmare-blogs-sites-networks/

If yes, put it in core, if not, keep it in a plugin.) The menus ticket was opened

in January 2010. The first approach was to create a menus interface simi-

lar to the widgets interface. By mid-February, however, little progress had

been made. Proposals competed on how menus should work. Ryan and Jen

contacted WooThemes to discuss bringing their custom woo navigation into

WordPress core. This was just days before the planned feature freeze on Feb-

ruary 15, 2010.

WooThemes’ custom navigation made it easy for users to add menus to

their websites. Developer Jeffrey Pearce (Jeffikus) worked with Ptah Dunbar

(ptahdunbar) on the core team to modify WooThemes’ code for core, and to

prepare core for the feature. At the time, core updated jQuery to match the

version WooThemes’ theme framework used. The original WooThemes code-

base created new database tables for the menus. As a general rule, WordPress

avoids adding tables to the MySQL database. Instead, core developers used

custom post types — existing core functionality.

However, Jeffrey found the time difference challenging. Jeffrey is based in

South Africa; core development work happens mostly on US time zones.

Development chats took place at 20:30 UTC, which was 22:30 in South

Africa. Additionally, Ptah and Jeffrey kept missing each other on Skype.

An environment in which everyone had a voice and an opinion wasn’t some-

thing that WooThemes was used to in their development process. Adii Pien-

aar, co-founder of WooThemes, described the process as excruciating. One

of the main points of contention was that WooThemes had originally put the

menus in the center of the screen with boxes to add menu items on the right-

hand side. WooThemes had invested time into designing it that way, but the

menu interface was flipped around to match WordPress’ left to right interface

convention.

The menu integration was one of the first times that the project had worked

directly with a commercial business (other than Automattic). While the

process was not always completely smooth, both sides benefitted from col-

laborating. WordPress got its menu system. While not exactly the same as

Milestones: The Story of WordPress

224

https://core.trac.wordpress.org/ticket/11817
https://core.trac.wordpress.org/ticket/11817
http://www.woothemes.com/2010/01/the-awesome-custom-woo-navigation/
https://profiles.wordpress.org/jeffikus
https://profiles.wordpress.org/ptahdunbar
http://make.wordpress.org/core/2010/02/25/menus-ux-manifesto/

the menu system that WooThemes created, it accelerated development.

WooThemes got the satisfaction of seeing its code used by every WordPress

user. Not everyone felt that WooThemes received adequate credit, though

Jeff didn’t share this viewpoint. “Just to have our name on the contributors’

wall — that to me was good enough,” he says. “It’s nice just to be able to say, I

built a part of WordPress. No one can ever take that away from me. That was

recognition enough for me.”

WordPress 3.0 ended up being a huge release, and while menu discussion

continued, launch was delayed again and again. By April, the core team

was still sending around wireframes — discussing whether menus should be

pulled from 3.0. The release candidate kept being pushed back. Matt reiter-

ated one of WordPress’ key philosophies:

Feature-led releases meant delays. Menus caused the hold-up with Word-

Press 3.0, with prevarication over the user interface and implementation.

The final release was packed full of features that included the new menus,

the WordPress Multisite merge, custom post type and taxonomy UI, custom

backgrounds and headers, and an admin color scheme refresh. Any of these

features could have been pushed to the next release, but there was no willing-

ness to do so.

One of the more controversial changes in WordPress 3.0 was a new function

called capital_P_dangit. This function ensures that the letter “p” in

WordPress is capitalized. People felt that WordPress was messing with their

content — that this automatic correction was the start of a slippery slope. For

some, it was overbearing pedantry, for others, censorship. WordPress has no

business changing what people wrote. Some saw it as incommensurate with

the project’s core freedoms: openness, freedom, and community.

Deadlines are not arbitrary, they’re a promise we make to ourselves and

our users that helps us rein in the endless possibilities of things that

could be a part of every release.
“

Milestones: The Story of WordPress

225

http://wptavern.com/woothemes-has-and-will-continue-to-get-credit
http://archive.wordpress.org/interviews/2014_06_06_Pearce.html#L47
https://irclogs.wordpress.org/chanlog.php?channel=wordpress-dev&day=2010-04-15&sort=asc#m109848
https://irclogs.wordpress.org/chanlog.php?channel=wordpress-dev&day=2010-04-15&sort=asc#m109848
http://make.wordpress.org/core/version-3-0-project-schedule/
http://make.wordpress.org/core/2010/04/20/deadlines-are-not-arbritrary-theyre-a/
http://make.wordpress.org/core/2010/04/20/deadlines-are-not-arbritrary-theyre-a/
https://core.trac.wordpress.org/changeset/14996
http://justintadlock.com/archives/2010/07/08/lowercase-p-dangit
http://justintadlock.com/archives/2010/07/08/lowercase-p-dangit
http://justintadlock.com/archives/2010/07/08/lowercase-p-dangit

Most importantly, the filter broke URLs in some instances. This was reported

before WordPress 3.0’s release, but because the filter had already worked

well on WordPress.com, it wasn’t fixed immediately. For example, a user

reported that his image, named “WordpressLogo_blue-m.png” was broken

because it had been renamed to “WordPressLogo_blue-m.png.” Upon

upgrading to WordPress 3.0, other users — those with folders with the low-

ercase “p” — had the same problem. As well as folders, URLs with the low-

ercase “p” were broken. Hosts saw an uptick in support requests. “When 3.0

arrived,” says Mike Schroder (dh-shredder) of Dreamhost, “we had a deluge

of support with broken URLs due to capital_P_dangit() applying to all

content. This was a particular problem because it was popular among cus-

tomers to use /wordpress as a subdirectory for their install. We helped cus-

tomers with temporary workarounds in the meantime, but were very happy

to see the issue fixed in 3.0.1.” Mark Jaquith added a fix, but many contribu-

tors believed WordPress should never have broken users’ websites in the first

place.

The capital_P_dangit function isn’t the only WordPress function that

filters content. Other filters include emoticons, autop, shortcodes, texturize,

special characters, curly quotes, tag balancing, filtered HTML / kses, and

comment link nofollows. From the core developers’ perspective, capitalizing

the “p” in WordPress didn’t actually change the meaning of the sentence,

except in edge cases such as, “Wordpress is the incorrect capitalization of

WordPress.”

Core developers became frustrated by the hyperbole around the filter and the

time spent arguing about it. In a comment on Justin Tadlock’s blog, Mark

Jaquith said:

Calling corrections censorship is absurd. It is no less absurd when the

capitalization of a single letter is called censorship. There is actual cen-

sorship going on all around the world at this very moment. I’m damn

proud of the fact that WordPress is being used to publish content that

“

Milestones: The Story of WordPress

226

https://core.trac.wordpress.org/ticket/13583
https://core.trac.wordpress.org/ticket/13583
https://core.trac.wordpress.org/ticket/13971
https://core.trac.wordpress.org/ticket/13971
http://wordpress.org/support/topic/images-not-appearing-3?replies=30#post-1559585
https://profiles.wordpress.org/dh-shredder
https://core.trac.wordpress.org/ticket/13971#comment:15
http://justintadlock.com/archives/2010/07/08/lowercase-p-dangit#comment-211354

A website Mark created reflects the position of many of the core developers

on the capital_P_dangit discussion:

While this had all of the hallmarks of a bikeshed, there were some procedural

issues that community members felt ought to be taken seriously. Whether the

WordPress software capitalized the “p” in WordPress or not, the method by

which the function was added to core broke accepted procedure: no ticket

was opened, no patch uploaded to trac. The code was simply committed. For

some, this set up an “us vs. them” mentality, where some core developers

could commit code as they saw fit, while everyone else in the community was

subject to a different process.

Despite these development snafus, with WordPress 3.0, the platform

makes governments around the world afraid of the citizens who publish

it. I’m incredulous that people are making a fuss about a single character

(which is only one of dozens of automatic corrections that WordPress

makes). It’s free software that is easily extended (or crippled) by plugins.

If the thought of going the rest of your life without misspelling Word-

Press it too much to bear, you have an easy out. Take it, take a deep

breath, and try to pick your battles.”

Milestones: The Story of WordPress

227

http://capitalp.org/
http://milestones.pressbooks.com/files/2015/11/capital_p_dangit.png
http://milestones.pressbooks.com/files/2015/11/capital_p_dangit.png
http://lists.wordpress.org/pipermail/wp-hackers/2010-July/032919.html

matured, making “WordPress as a CMS” a reality. It also introduced a new

default theme for WordPress, ushering in a new approach with new annual

default themes. Gone was Kubrick, with its bold, blue header. The new theme,

Twenty Ten, showcased WordPress’ new menus feature.

WordPress 3.0 ushered in changes to the project and the development

process. It opened up WordPress to a new generation of people who became

increasingly active. Over the coming releases, some of those committers

would take on leadership, both in terms of development and in the wider

community.

Milestones: The Story of WordPress

228

CHAPTER 37

The WordCamp Guidelines

By the time WordPress 3.0 came out in 2010, 107 WordCamps had been held

across the world, in countries as diverse as Thailand, Germany, the Philip-

pines, Canada, Israel, and Chile. WordCamps create spaces in which Word-

Press users, developers, and designers converge to listen to presentations and

talk about WordPress. Participants meet project leaders, socialize, and get

to know one another. WordCamps attract new contributors, and developers

meet with users to learn about problems they experience with WordPress.

WordCamps have always been informal, and through the early events, the

organization was just as informal as the events themselves. In the beginning,

interested community members simply decided to organize a WordCamp.

They contacted Automattic for stickers, buttons, and other swag. A blog for

WordCamp organizers was set up in 2009, so that organizers could commu-

nicate with one another.

In May 2010, Jen took over as central WordCamp liaison, instituting changes

in WordCamp organization. Jen said that “WordCamps are meant to promote

the philosophies behind WordPress itself.” Without any real structure and

oversight, things happened contrary to WordPress’ core philosophies. For

example, WordCamps accepted sponsorship from people and companies in

violation of WordPress’ license — the GPL. While non-GPL compliant devel-

opers and companies are welcome to attend WordCamps, they’re not able

to organize, sponsor, speak, or volunteer. This is because WordCamps are

official platforms of the WordPress project, and the project doesn’t want to

endorse or publicize products contrary to its own ethos.

Without central oversight, issues arose at WordCamps. Many WordCamps

ran without budgets. Some organizers took money for themselves. One

229

http://wordcamphowto.wordpress.com/2009/06/26/hello-welcome-to-this-super-blog/
http://wordcamphowto.wordpress.com/2009/06/26/hello-welcome-to-this-super-blog/
http://wordcamphowto.wordpress.com/2010/05/19/fyi-im-taking-over-as-central-liaison/

WordCamp accepted sponsorship money, the WordCamp folded, and the

sponsorship never returned. Another opened for registration just so that the

organizer could compile a mailing list to which they could send marketing

emails.

WordCamps needed better oversight, including clear guidelines. From May

2010 onward, that started to happen. Jen published the first set of Word-

Camp guidelines.

WordCamps should be:

• about WordPress.

• open to all, easy to access, and shared with the community.

• locally organized and focused.

• open to lots of volunteers.

• stand-alone events.

• promote WordPress’ philosophy.

• not be about making money.

In some quarters, the changes went down badly. Others were more relaxed

about the changes, but they, too, asked why people who promoted non-GPL

products would be banned from speaking. While many WordPress theme

shops were 100% GPL, those that weren’t 100% GPL were indignant that they

would have to be GPL-compliant just to speak at a WordCamp.

There were frustrations about the way in which the guidelines emerged.

They were published without consultation with WordCamp organizers and

appeared to be an edict from above. Brad Williams (williamsba1) says: “I

think it probably would have been more beneficial across the board for some

more open conversations between the Foundation and the organizers to

make sure, one, that these guidelines make sense and that we’re all on the

same page and if there was any concerns get those out in the open.” As with

previous decisions, the guidelines weren’t part of a conversation between

the Foundation and the WordCamp community. When they appeared, they

seemed unilateral and the rationale was poorly communicated.

Milestones: The Story of WordPress

230

https://web.archive.org/web/20100723003529/http://central.wordcamp.org/about/
https://web.archive.org/web/20100723003529/http://central.wordcamp.org/about/
http://onefinejay.com/2010/05/19/a-few-questions-on-jane-wells-revised-wordcamp-policies
http://www.bloggingpro.com/archives/2010/05/19/wordcamps-need-to-be-gpl-too-now/
http://www.bloggingpro.com/archives/2010/05/19/wordcamps-need-to-be-gpl-too-now/
http://profiles.wordpress.org/williamsba1
http://archive.wordpress.org/interviews/2014_11_10_Williams.html#L45

Some guidelines responded to community problems. It is important that

WordCamps focus on the software. At least 80% of the content should be

about WordPress. Presentations about social media, SEO, and broader tech-

nology issues should not be the event’s main focus. Other guidelines were

more about ensuring that events about WordPress mirror the project’s orga-

nization and ethos. Like the project, WordCamps ought to be volunteer-

driven, from the organizers, to the speakers, to the volunteers who help out

during the day. The WordPress project was built by volunteers and Word-

Press events run on volunteer power. WordCamps should also be accessible

to anyone who chooses to attend. This means keeping ticket prices intention-

ally low.

The guidelines have evolved over the years, with community feedback. While

not everyone is happy with them, WordCamps continue to flourish around

the world.

Milestones: The Story of WordPress

231

http://plan.wordcamp.org/become-an-organizer/representing-wordpress/

CHAPTER 38

Dealing With a Growing
Project

By the time WordPress 3.0 launched, more people were interested in Word-

Press than ever before. In the early days the project attracted developers,

bloggers, and people interested in helping others via support or writing doc-

umentation. But several factors meant that people with diverse backgrounds

were getting involved.

WordPress 2.7 demonstrated that making software isn’t just about writing

code; design, user experience, UI expertise, and testing are all very much

part of the process. Useful software requires a diverse set of eyes. This means

attracting new contributors by illuminating the different ways one can con-

tribute to the project.

While development, documentation, and support are obvious ways to partic-

ipate, in 2009, Jen Mylo wrote about the different ways for people to con-

tribute to the project. One was graphic design. After a 2008 icon contest was

successful, the project tried to find more ways for designers to contribute.

A new trac component for graphic design tasks ensued, and designers were

invited to iterate WordPress’ visual design. People were also encouraged to

participate with usability testing. WordPress 2.7’s success stemmed from

user testing during the development cycle. The development team was keen

to replicate this process in future releases. Jen also invited people to con-

tribute by sharing ideas, feedback, and opinions.

As well as her work on the development blog, Jen and other project leaders

232

https://wordpress.org/news/2009/04/contributing-to-wordpress-part-ii-graphic-design/
https://wordpress.org/news/2009/05/testing-opps/
https://wordpress.org/news/2009/05/ideas/

spoke at WordCamps to encourage community involvement. Developing a

strong community was becoming as important as software development.

Project infrastructure changes also affected WordPress’ growth, particularly

in the third-party developer community. Users could readily find themes

and plugins. Plugins iterated more quickly; the plugin directory launched in

March 2007 in WordPress 2.3. Later that year, the plugin update notifica-

tion system arrived, and from WordPress 2.7 onward, users could install plu-

gins from their admin screens. Theme improvements were similar, if a little

later. The theme directory launched in July 2008; it arrived on admin screens

with WordPress 2.8 in 2009. Giving users more access to plugins and themes

meant third-party developers had much greater access to users than ever. The

theme and plugin directory were growing exponentially.

The theme directory was becoming more difficult to manage with the expo-

nential theme growth. Joseph Scott (josephscott) developed the first version

of the theme directory, and spent much of his time reviewing themes and pro-

viding feedback. While many theme issues were security-related, Joseph also

advocated for best practices. Soon the work became too much for one person.

Joseph wrote:

No one knew how the experiment would turn out. A rush of people signed

up for the new mailing list; guidelines were drawn up. Though the overall

response was positive, some felt that the guidelines were too restrictive —

that some theme requirements should be recommendations. On the WP Tav-

ern forums, Justin Tadlock outlined some concerns, specifically that guide-

The theme directory has been chugging along for more than a year now.

During that time we’ve tinkered with the review process and some of the

management tools, but haven’t really opened it up as much as we’d like.

It’s time to rip off the band-aid and take some action; to that end, we’re

looking for community members to help with the process of reviewing

themes for the directory.

“

Milestones: The Story of WordPress

233

https://profiles.wordpress.org/josephscott
https://wordpress.org/news/2010/06/expanding-the-theme-review-experiment/
http://lists.wordpress.org/pipermail/theme-reviewers/2010-June/
http://lists.wordpress.org/pipermail/theme-reviewers/2010-June/
http://codex.wordpress.org/index.php?title=Theme_Review&oldid=91889

lines didn’t allow themes with custom template hierarchies or custom image

systems. Some believed the theme review team should check for spam and

other objectionable practices. Other developers simply decided to remove

their themes from the directory.

Manpower was a problem for those reviewing themes. The review queue was

clogged with 100 themes by July 2010; new themes were added every day.

Only three or four people were actively reviewing themes. Over time, auto-

mated processes and new tools have improved the theme review process.

For example, the theme check plugin tests the theme against all of the latest

theme review standards.

But despite the teething problems, the theme reviewers have a system that

benefits both users and developers: users get safe themes approved by Word-

Press.org, and theme developers get feedback and help on their themes.

There have been other, long-term benefits. Joseph says:

As the WordPress project settled into concrete groups, communication

needed to improve. Core product development was discussed on wpde-

vel.wordpress.com. Other teams were scattered over mailing lists and word-

press.com blogs. Toward the end of 2010, a new blog network was set up on

WordPress.org — make.WordPress.org became the new home for WordPress

contributor teams, with blogs for core, UI, theme review, and accessibility.

Over time new blogs such as support, documentation, plugins, and commu-

nity, were added.

…looking back on it over the long term it’s been nice to see some folks

who started way back then and have gone on to be very successful as far

as developing their own themes, commercial themes, while still support-

ing free and open source at the same time. I think over the long term it’s

been rewarding to see that jumping off point for people to be able to con-

tinue to produce more themes, and very well regarded and high quality

themes.

“

Milestones: The Story of WordPress

234

http://quirm.net/2010/08/27/retiring-themes/
http://quirm.net/2010/08/27/retiring-themes/
https://wordpress.org/plugins/theme-check/
http://archive.wordpress.org/interviews/2014_05_27_Scott.html#L66

Each make.WordPress.org blog runs the P2 theme. Created by Automattic

for internal communication, P2 is a microblogging tool that allows users to

post on the front end — similar to Twitter — without the 140-character limit.

Threaded comments on posts allow for discussion. Unless made completely

open, only people who are editors of a blog can write a post while anyone is

able to comment.

The “make” blogs are an important centralized space on WordPress.org

where contributors gather. If a contributor is interested in core development,

they can follow the core blog; forum moderators can follow the support blog;

people with a UI focus can follow the UI blog. Contributors can subscribe to

the blogs and follow along with what’s going on from their email inboxes.

By moving everything onto P2-themed blogs on make.WordPress.org, the

conversation’s tone has changed — everything takes place in public. This

encourages a more respectful attitude among community members. The

focus is on getting work done, rather than devolving into arguments.

These sorts of focused communication improvements have helped the project

to build capacity and grow. What often happens is that a need appears, a call

goes out, and if enough people answer the call, the project moves forward.

This sort of community and capacity building is an important part of running

a successful free software project. As the community grows, needs change

and new contribution areas open up. A project that grows so far beyond its

hacker roots that it encompasses a diverse set of contributors is a healthy one.

Milestones: The Story of WordPress

235

CHAPTER 39

Thesis

By mid-2010, one theme was still a GPL holdout: Thesis, from DIYThemes.

Created by theme designer Chris Pearson and blogger Brian Clark, Thesis was

popular as a feature-heavy framework — it gave users many more options

than most WordPress themes. Users can customize every element of their

website via the user interface. On the original about page, Chris states Thesis’

aim: “I wanted a framework that had it all — killer typography, a dynamically

resizable layout, intelligent code, airtight optimization, and tons of flexibil-

ity.” Tech blogs featured Thesis and high profile bloggers, including Matt

Cutts, Chris Brogan, and Darren Rowse adopted it.

Chris Pearson was well-respected in the community; he’d already developed

Cutline and PressRow before moving into the premium theme market with

Thesis. A mid-2009 ThemeShaper post recalls Thesis’ influence as “The Pear-

son Principle”: “Bloggers want powerfully simple design on an equally robust

framework.” With themes such as Revolution and Premium News, theme

developers were already creating feature-rich themes, and Thesis cemented

that approach, ushering in the era of the theme framework 1. Chris called this

approach “ubiquitous design.” A theme wasn’t simply a website skin, it was a

tool to build your website. It took another four years before theme developers

stopped packing themes with options and started moving features into plug-

ins.

While theme vendors adopted the GPL, Thesis held out. Discussions between

1. The term “theme framework” is often used to refer to different things. In some instances, a theme

framework is a base, or “starter” theme that a developer can build from. In other cases, it’s a drop-in

code library that facilitates development. But it’s also used in marketing to users, when a theme

framework is a feature-heavy theme with multiple options.

236

https://web.archive.org/web/20080610074529/http://diythemes.com/thesis/about/
https://web.archive.org/web/20080610074529/http://diythemes.com/thesis/about/
http://thenextweb.com/2008/07/17/thesis-represents-the-next-generation-of-wordpress-themes/#!A2Baz
http://www.mattcutts.com/blog/switching-things-around/
http://www.mattcutts.com/blog/switching-things-around/
http://www.chrisbrogan.com/thesis-wordpress-theme/
http://www.problogger.net/archives/2008/07/18/thesis-a-wordpress-theme-design-worth-considering/
http://themeshaper.com/2009/05/21/design-popular-wordpress-theme-chris-pearsons-secret/
http://themeshaper.com/2009/05/21/design-popular-wordpress-theme-chris-pearsons-secret/comment-page-1/#comment-9718
http://themeshaper.com/2009/05/21/design-popular-wordpress-theme-chris-pearsons-secret/comment-page-1/#comment-9718
http://pomomusings.com/2009/06/04/switch-wordpress-blog/#comment-59022

DIYThemes and Automattic went nowhere and relationships fractured. In

June 2009, Brian and Toni were in discussions when a blogger’s comment

thread was hijacked. A long debate about Thesis and the GPL ensued. Matt

urged people to move away from Thesis, saying “if you care about the philo-

sophical underpinnings of WordPress please consider putting your support

behind something that isn’t hostile to WordPress’ core freedoms and GPL

license.”

In July 2010, the WordPress/Thesis debate reignited after Chris Pearson’s

interview on Mixergy. In it, Chris shares Thesis’ revenue figures, putting a

conservative estimate at 1.2 million dollars within 16 to 18 months.

Just over a week later, Matt and Chris took to Twitter. Matt was unhappy

about Chris flaunting revenue and the GPL — violating WordPress’ license.

Cutting remarks ensued until Andrew Warner from Mixergy set up an

impromptu, live debate to discuss the issues. The hour-long discussion airs

both sides of the argument. Matt argues that Thesis is built on GPL software

— WordPress — and must honor the license. Matt suggests that Chris is dis-

respectful of all WordPress authors and that he’s breaking the law. Chris said

adopting the GPL meant giving up his rights and losing piracy protection. He

argues that “what I’ve done stands alone outside of WordPress completely,”

and that Thesis “does not inherit anything from WordPress.” The argument

descends into a rambling discussion of economics, and the conversation ends

when Matt threatens to sue Chris if he refuses to comply with the GPL.

Matt, Automattic, and WordPress took public action against Thesis following

the interview. Matt offered to buy Thesis users an alternative premium

theme, consultants using Thesis were removed from the Code Poet directory

of WordPress consultants, and Chris Pearson’s other themes — Cutline and

PressRow — were removed from WordPress.com.

Matt wasn’t the only one in the WordPress community to come out swinging

against Thesis. Other lead and core developers wrote about their GPL / The-

sis stance. Ryan Boren wrote, “where do I stand as one of the primary copy-

right holders of WordPress? I’d like to see the PHP parts of themes retain

Milestones: The Story of WordPress

237

http://pomomusings.com/2009/06/04/switch-wordpress-blog/#comment-59022
http://pomomusings.com/2009/06/04/switch-wordpress-blog/
http://mixergy.com/chris-pearson-thesis-interview/
https://twitter.com/pearsonified/status/18536597161
http://mixergy.com/chris-pearson-matt-mullenweg/
https://twitter.com/photomatt/status/18548422506
https://twitter.com/photomatt/status/18548422506
http://www.flickr.com/photos/mg315/4792383313/
http://www.flickr.com/photos/mg315/4792383313/
http://www.pearsonified.com/2010/11/former-cutline-pressrow-theme-user.php
http://ryan.boren.me/2010/07/15/wordpress-theme-licensing/

the GPL. Aside from preserving the spirit of WordPress, respecting the open

source ecosystem in which it thrives, and avoiding questionable legal ground,

retaining the GPL is practical.” Mark Jaquith noted that WordPress themes

don’t sit on top of, they’re interdependent on WordPress:

Even developers who believed themes aren’t derivative of WordPress

declared Thesis derivative. Developer Drew Blas wrote a script comparing

every line of WordPress and Thesis. His script revealed several instances of

Thesis code taken from WordPress. Core developer Andrew Nacin pointed

out that Thesis’ own inline documentation declared: “This function is mostly

copy pasta from WP (wp-includes/media.php), but with minor alter-

ation to play more nicely with our styling.”

A former employee of DIYThemes left a comment on Matt’s blog:

…in multiple different places, with multiple interdependencies. This

forms a web of shared data structures and code all contained within a

shared memory space. If you followed the code execution for Thesis as

it jumped between WordPress core code and Thesis-specific code, you’d

get a headache, because you’d be jumping back and forth literally hun-

dreds of times.

“

check out Thesis’ handling of comments (thesis/lib/classes/

comments.php). Large chunks of it are ripped right from WordPress.

I know they are… because I’m the one who did the ripping. Whether I

informed Chris of that or not doesn’t matter because I no longer have

any of our old chat logs to prove one way or another, but suffice it to say

the latest public release of Thesis (and numerous versions before hand)

contain obviously GPL code. Whether those portions get rewritten in the

impending 3.0 release, I don’t know… but for Chris to claim that he was

responsible for and devised all of Thesis at 13:33 or so in the debate…

Well, he was lying to you, either intentionally or not.

“

Milestones: The Story of WordPress

238

http://markjaquith.wordpress.com/2010/07/17/why-wordpress-themes-are-derivative-of-wordpress/
http://markjaquith.wordpress.com/2010/07/17/why-wordpress-themes-are-derivative-of-wordpress/
http://drewblas.com/2010/07/15/an-analysis-of-gpled-code-in-thesis/
http://drewblas.com/2010/07/15/an-analysis-of-gpled-code-in-thesis/
http://nacin.com/2010/07/15/thesis-gpl/
http://nacin.com/2010/07/15/thesis-gpl/
http://ma.tt/2010/07/syn-thesis-1/#comment-481845

On July 22, — not even a week after the initial Mixergy interview — Chris

Pearson announced that Thesis would be released under a split license. The

public furor, compounded by pressure from inside DIYThemes, forced Chris

to capitulate. Brian Clark drafted the license, shortly before leaving

DIYThemes, citing “completely different opinions about the direction of the

development of Thesis, the running of the company, and our relationship

with the WordPress community.” When Thesis 2 launched in 2012, it had a

new, proprietary license.

The debate around Thesis and the GPL had far-reaching implications for

everyone involved. Prominent blogs moved away from Thesis. Brian Gard-

ner’s Genesis theme became a popular choice. Thesis and Chris Pearson

became less prominent in the community, focusing instead on cultivating

and building a large customer base. The debacle also proved that WordPress

will go to court to defend flagrant license abuse. There was, for a while, a

relative calm in the community around the GPL. WordPress.org supported

commercial theme sellers whose themes were 100% GPL and tolerated those

that packaged their themes with two licenses. It would be another four years

before the community found itself in another GPL argument on the four free-

doms, this time between WordPress and Envato.

Milestones: The Story of WordPress

239

https://twitter.com/pearsonified/status/19288707443
https://twitter.com/pearsonified/status/19288707443
http://technosailor.com/2010/07/29/exclusive-interview-brian-clark-leaves-diythemesthesis-theme/
http://ma.tt/2010/08/syn-thesis-3-switchers/

Part Six

Crazyhorse tests best

Full GPL only, please

Release leads, hurray

CHAPTER 40

The Transition to Release
Leads

From late 2011 on, the development process iterated. Not optimal, it lacked

accountability. Bottlenecks festered and deadlines passed. Each release from

WordPress 3.4 on endured major development process change; it wasn’t until

WordPress 3.8 that process experimentation slowed.

Experimentation started at the core team meetup in Tybee Island, Georgia, in

December 2011. Lead developers, committers, and active core developers dis-

cussed the project’s issues and roadmap, informing the scope setting meeting

for WordPress 3.4 on January 4, 2012.

The scope chat notes cover the issues discussed. The team acknowledged

process problems. Jen listed the issues: “lack of good time estimation,

resource bottlenecks, lack of accountability, unknown/variable time commit-

ments/disappearing devs, overassignment of tasks to some people, reluc-

tance to cut features to meet deadline.”

They split feature development into teams; two contributors would lead each

team to reduce contributor overextension and project abandonment.

Ideally, a lead developer or a committer would lead each feature team. To

help engage and mentor new contributors, one new contributor would pair

with each lead or committer. Each team had to post regular updates and

deliver their feature on time. They created a schedule with overlapping cycles

that encompassed development, UX, and bug fixes to reduce bottlenecks.

241

https://irclogs.wordpress.org/chanlog.php?channel=wordpress-dev&day=2012-01-04&sort=asc#m349775
https://irclogs.wordpress.org/chanlog.php?channel=wordpress-dev&day=2012-01-04&sort=asc#m349775
https://make.wordpress.org/core/2012/01/05/dev-chat-notes-01042012/

The proposal for the 3.4 release process.

The team decided that releases would have a specific focus. WordPress 3.3

had been a cluster of disparate features, some of which had been pulled

because they weren’t ready. WordPress 3.4 was the first cycle to have an

overarching focus — appearance/switching themes. The development team

worked on improving both front-end and admin features that adjust a site’s

appearance.

Between WordPress 3.4 and 3.5, the project leadership approach evolved —

a change that had started back in WordPress 3.0 when Dion Hulse became

a committer. Though Dion received commit access, he was not a lead devel-

oper. This was the first step toward decoupling the lead developer position

from commit access. To reduce bottlenecks, the project needed committers,

but not necessarily more lead developers. Separating the roles offered oppor-

tunities for strong coders and patch triagers, and for those who wanted to

contribute, but not necessarily in a leadership role.

And yet, confusion reigned on what the lead developer title actually entailed.

Core team members perceived the role differently; no one agreed on what

the lead developer title meant. For Mark Jaquith, the lead developer role has

changed organically over the years. To begin with, the role related to coding.

Over time, it transitioned, particularly around the growth of WordCamps:

“We started going around and talking to users about some of the philosophy

Milestones: The Story of WordPress

242

http://milestones.pressbooks.com/files/2015/11/3_4_dev_process.jpg
http://milestones.pressbooks.com/files/2015/11/3_4_dev_process.jpg
http://archive.wordpress.org/interviews/2013_11_22_Jaquith.html#L30

behind WordPress and the direction we wanted to take. It became more of a

general leadership role in practice.” The role also evolved as lead developers

worked with the community: often, lead developers responded to comment

threads to address issues, or speak up on behalf of the project.

However, the role had never been formally clarified. While the lead devel-

opers handled many coding decisions, their additional responsibilities and

authority were unclear. Did they have authority across the project? Should

they make decisions in areas such as WordCamps, documentation, or theme

review?

The lead developer role “didn’t really have a set of responsibilities assigned

with it or expectations,” says Matt. According to him, the lead developer

leads development, not other areas of the project; he believes that confering

authority and responsibility to a development role makes it difficult for non-

coders to achieve project authority and responsibility.

Matt had articulated as much, as early as 2005, in stating that commit access

did not equate to community status. It may never have been Matt’s intention

to automatically confer authority on people with commit access, though

extending commit demonstrated that committers had earned trust, and, as

such, people naturally looked to committers as community and code leaders.

Since roles and responsibilities were undefined, people simply perceived

commit access as a general leadership role. The only non-coder who had an

official leadership role in the project — other than the lead developers — was

Jen, but she was an integral part of the core development team and there was

no clear path for anyone to follow in her footsteps.

In June 2012, the confusion around the role brought conflict. Since Word-

Press 3.0, a new generation of coders had driven development. Contributor

changes were marked between the 2010 core meetup in Orlando, Florida, and

the 2011 meetup in Tybee Island, Georgia. In 2010, just the small team of lead

developers (Mark Jaquith, Andrew Ozz, Peter Westwood, Matt, and Ryan

Boren along with Jen) met up. In 2011, the meetup had new faces including

Dion Hulse, Jon Cave (duck_), Daryl Koopersmith, and Andrew Nacin.

Milestones: The Story of WordPress

243

http://archive.wordpress.org/interviews/2014_07_07_Mullenweg.html#L214
http://lists.automattic.com/pipermail/wp-hackers/2005-June/001417.html
http://profiles.wordpress.org/duck_

From time to time, someone arrives and influences the project. In the early

days, Ryan Boren drove WordPress’ development, but post-WordPress 3.0,

it was Andrew Nacin. “Nacin like Ryan is one of those guys that just has an

ability to get in a flow, and just really crank and get focused intensely, and get

through a ton of work,” says Matt.

Nacin’s project influence grew, and between WordPress 3.4 and 3.5, Ryan

Boren proposed that since Nacin drove releases strongly, he deserved recog-

nition and should be made a lead developer.

Rather than appoint Nacin as a lead developer immediately, Matt proposed

an organizational shift in the project. Matt argued that the lead developer title

was historical and non-meritocratic, that those driving the project should

hold leadership roles. Matt wanted opportunities for new developers to

assume project leadership roles. He proposed that, instead of having a small

group of lead developers, the project move to release leads, nominating

Andrew Nacin and Daryl Koopersmith to assume the role in the next release.

Matt’s proposal offered clear authority to individuals for a given release;

release leads would have final say, both over the lead developers, and over

Matt. Some in the “historical and un-meritocratic” roles perceived this move

as an attempt to remove the old guard to make way for the new. While a num-

ber of the lead developers aren’t active in core on a daily basis, they are in

regular contact with those who work on core, providing advice on architec-

ture and development.

On reflection, Matt says that there was a misunderstanding. He didn’t mean

to imply that the people holding lead developer roles were worthless or irrele-

vant, but that the roles did not reflect project reality. “A source of some of the

conflict,” says Matt, “is this idea that the lead developers sort of had the same

role as me where they had sort of purview over everything across all parts of

WordPress.”

The lead developer role discussion raised dissatisfaction around project deci-

sion making. Many of those who ran day-to-day development felt that uni-

lateral decisions were made without team consultation. Matt had taken a less

Milestones: The Story of WordPress

244

http://archive.wordpress.org/interviews/2014_07_07_Mullenweg.html#L196
http://archive.wordpress.org/interviews/2014_07_07_Mullenweg.html#L214

active role in recent years, as Jen and Ryan, supported by the other lead

developers, drove the project, yet decisions were made and announced with-

out consultation. This was a culmination of other issues within the core devel-

opment team and in the wider project: checking in code without consultation,

providing feedback only toward the end of a release, and decisions around

WordPress.org — the site Matt owns, but that influences the entire commu-

nity.

In response, some core team members — including lead developers and other

team members — sent a group email to Matt to express their discontent with

the project. They felt that Matt’s perspective on the project’s organization,

authority, and responsibility, didn’t reflect the project’s realities. The group

proposed an official project leadership team; they wanted to retain the lead

developer title as a meritocratic title for core developers who aligned with

WordPress’ philosophies, demonstrated leadership, code expertise, and men-

tored new developers. While the group happily supported the release leads

proposal, they felt that the decisions for architecture, code, and implemen-

tation should rest with the lead developers, and that decisions affecting the

project should lie with a leadership team.

In response, those involved scheduled a Google Hangout to discuss the

issues, air grievances, and find a way forward. As a result, things changed,

and the first 3.5 release cycle post reflects some of those changes.

Andrew Nacin was promoted to lead developer, and core development

adopted release leads with responsibility for an individual release cycle. They

chose media as the scope for the 3.5 release; the development team had

wanted to tackle it for some time, but with such a large scope, it hadn’t been

attempted. Daryl Koopersmith created a plugin, called Mosaic, which was the

prototype for new media management. Much of it was written in JavaScript,

where Daryl’s expertise lay. But as a PHP free software project, there were

few who could help him. As a result, Andrew and Daryl spent between 80 –

100 hours a week working on the release.

While the release itself was well received and media was overhauled, the

Milestones: The Story of WordPress

245

http://make.wordpress.org/core/2012/07/11/recognition-and-news-about-the-3-5-cycle/
https://wordpress.org/plugins/mosaic/

actual development cycle wasn’t such a success. It was a huge amount of

work, involving lots of feedback, codebase iterations, and coding a whole

new feature from scratch. There were four major iterations to the user inter-

face, including one 72 hours before the release. This meant that the new

“release leads approach” got off to a faltering start. The intent was to have

release leads guide and lead a release, not necessarily spend hours carrying

out heroic coding feats. Once again, the release cycle focused on a single fea-

ture; it shipped because two coders broke their backs getting it done. But the

next release cycle — 3.6 — revealed that the release-specific feature develop-

ment model was broken.

Milestones: The Story of WordPress

246

CHAPTER 41

The Community Summit

The first en-masse, invitation-only WordPress community get-together —

The Community Summit — took place in 2012. The Community Summit

focused on issues facing WordPress software development and the wider

WordPress community. Community members nominated themselves and

others to receive an invitation; a team of 18 people reviewed and voted on

who would be invited. The attendees — active contributors, bloggers, plugin

and theme developers, and business owners from across the WordPress com-

munity — came to Tybee Island, Georgia, to talk about WordPress.

The main event, held at Tybee wedding chapel, was a one-day unconference.

A few informal days for project work were scheduled afterward. In the morn-

ing, attendees pitched suggestions for discussion, discussion groups formed

around tables, and twice during the day, individual groups shared their pro-

posals for taking action.

The subjects discussed covered the spectrum of development and community

issues. Development-specific topics included mobile apps, improving deploy-

ments, using WordPress as a framework, multisite, JavaScript, the theme

customizer, and automatic updates. They talked about how to deepen devel-

oper experience, including better information for developers on UI practices.

Broader community discussions focused on the role of the WordPress Foun-

dation, open sourcing WordCamp.org, the GPL, and women in the Word-

Press community. There were discussions about different WordPress.org

teams, such as UI, accessibility, theme review, and about improving doc-

umentation. Summit participants came from around the world; attendees

talked about internationalization and global communities. Business owners

raised issues such as managed WordPress hosting and quality control in com-

247

mercial plugins. Finally, there were discussions about making it easier for

both individuals and businesses to contribute to the project.

With so much discussion, many different ideas surfaced. Some proposed

ideas moved forward, while others languished lacking contributor support.

Summit discussions resulted in:

• Better theme review process documentation to increase consistency

and transparency.

• A documentation and Codex roadmap (developer.wordpress.org

eventually launched).

• Language packs included in core in WordPress 4.0.

• Headers added to the P2 themes to instruct contributors on how to get

involved.

• Published a make/events sub-team list.

• Automatic updates for core.

• Individual plugin reviews on WordPress.org.

• Open sourced the WordCamp.org base theme.

As well as creating a space for contributors to discuss issues, many contribu-

tors met for the first time at the summit, and the in-person talks invigorated

the community.

A new team — a plugin repository review team — formed. Up until then,

Mark Riley carried the load reviewing plugins for the repository. The com-

munity believed plugins required the same rigor as themes. Plugin code qual-

ity was raised on community blogs and on wp-hackers. Otto started to review

plugins too, and later Mika Epstein (ipstenu) and Pippin Williamson (mor-

dauk) helped conduct plugin reviews. Later, Boone Gorges (boonebgorges)

and Scott Riley (coffee2code) joined the team.

The plugin review team faces different challenges than the theme review

team. A theme is a specific group of template files with a defined structure.

It calls functions, it requires a header, footer, and a sidebar. A plugin can be

anything at all, so there’s no way to automate reviews, which can be a lot of

Milestones: The Story of WordPress

248

http://wptavern.com/is-a-plugin-validation-team-a-pipe-dream
http://lists.wordpress.org/pipermail/wp-hackers/2010-August/034146.html
https://profiles.wordpress.org/ipstenu
https://profiles.wordpress.org/mordauk
https://profiles.wordpress.org/mordauk
https://profiles.wordpress.org/boonebgorges/
http://profiles.wordpress.org/coffee2code

work. This review process cleared out malicious plugins, spam plugins, and

plugins with security holes. A set of guidelines evolved to protect WordPress

users.

Again, a small group of contributors created a team to address a specific pro-

ject need. This has continued ever since the summit; a team develops training

programs for people who want to teach WordPress, a team moderates Word-

Press.tv, and there’s a team of contributors who help to support meetups. The

summit allowed people to get together, to talk about their own interests, meet

like-minded contributors, and move projects forward. The community got to

be together as a community, to get to know one another socially — instead of

through text-based, online communication.

Milestones: The Story of WordPress

249

https://wordpress.org/plugins/about/guidelines/

CHAPTER 42

The Spirit of the GPL

By early 2013, the GPL discussion had slowed. Not everyone liked it, but most

accepted that the WordPress project would only support 100% GPL prod-

ucts. Many were surprised by a sudden flare-up around not just GPL legali-

ties, but the “spirit” of the license. In a 2008 interview, Jeff Chandler asked

Matt about the spirit of the GPL. Matt said that the spirit of the GPL is about

user empowerment, about the four freedoms: to use, distribute, modify, and

distribute modifications of the software. Software distributed with these four

freedoms is in the spirit of the GPL. WordPress was created and distributed

in this spirit, giving users full freedom.

The Software Freedom Law Center’s opinion gives developers a loophole

around themes — one that helps them achieve GPL compliance — but denies

the same freedoms as WordPress. PHP in themes must be GPL, but the CSS,

images, and JavaScript do not have to be GPL. This is how Thesis released

with a split license — the PHP was GPL; the remaining code and files were

proprietary. This split license ensures GPL-compliance, but does not embrace

the GPL’s driving user-freedom ethos.

The loophole may have kept theme sellers GPL-compliant, but Word-

Press.org rejected that approach. In a 2010 interview, Matt said “in the phi-

losophy there are no loopholes: you’re either following the principles of it or

you’re not, regardless of what the specific license of the language is.” Word-

Press supports theme sellers that sell themes with a 100% GPL license. Those

who aren’t 100% GPL receive no promotion on WordPress.org or on official

resources.

In early 2013, ThemeForest — Envato’s theme marketplace — came under

scrutiny. Envato runs blogs and marketplaces that sell everything from

250

http://wordpress.tv/2010/03/09/mullenweg-little-wordpress-interview/

WordPress themes and plugins, themes for other CMSs, to photographs,

videos, and illustrations. WordPress is just one aspect of their business,

though a significant one, and ever-growing. Envato became GPL-compliant

in 2009 by releasing their themes with two licenses: GPL for the PHP, and a

proprietary license for the remaining files and code.

ThemeForest has long been a popular choice for individual theme sellers. It

offers exposure and access to a huge user community. As the theme shop

marketplace saturated, it became more and more difficult for new theme sell-

ers to break through.

Theme shops like StudioPress, WooThemes, and Elegant Themes dominate

the market. ThemeForest offers everything a theme seller needs: hosting,

sales tools, ecommerce, and a shop front. People can sell themes without the

set-up work that can steal so much time. Theme sellers make good money out

of selling on ThemeForest. As early as December 2011, Envato announced its

first theme seller to make a million dollars in theme sales.

In January 2013, ThemeForest author Jake Caputo received an email from

Andrea Middleton (andreamiddleton) at WordCamp Central. He was told

that, as a ThemeForest author, he was not allowed to participate at official

WordPress events. Jake had already spoken at two WordCamps, had plans to

speak at a third, and was helping to organize WordCamp Chicago.

The issue was over theme licensing and WordCamp’s guidelines. WordCamps

are official WordPress events that come with the WordPress Foundation’s

seal of approval. Organizers, volunteers, and speakers must fully embrace the

GPL — going beyond GPL compliance to pass on all WordPress’ freedoms to

users. The guidelines state that organizers, volunteers, and speakers must:

Embrace the WordPress license. If distributing WordPress-derivative

works (themes, plugins, WP distros), any person or business should give

their users the same freedoms that WordPress itself provides. Note: this

is one step above simple compliance, which requires PHP code to be

“

Milestones: The Story of WordPress

251

http://notes.envato.com/milestones/kriesi-first-to-1000000-on-the-marketplaces/
http://notes.envato.com/milestones/kriesi-first-to-1000000-on-the-marketplaces/
https://profiles.wordpress.org/andreamiddleton/
http://plan.wordcamp.org/become-an-organizer/representing-wordpress/

ThemeForest vendors had only the split license, in which the PHP was GPL

and the CSS, JavaScript, and images fell under a proprietary license. For Jake

to become 100% GPL, he would have to stop selling on ThemeForest and find

a new outlet for his themes. This meant losing access to the more than two

million ThemeForest members — not to mention a significant portion of his

income.

WordCamp Central’s actions angered some community members; some

thought it was unfair to ask theme sellers to give up their livelihood simply

to speak at a WordCamp. Others supported WordPress.org; they believed the

stance consistent with the GPL.

On both sides, people were frustrated for ThemeForest’s authors. While the

issue had little influence on the powers-that-be at WordPress or Envato,

theme authors stuck in the middle suffered. With only the split license at The-

meforest, they had one choice — jeopardize their short-term livelihood by

moving off ThemeForest.

The argument raged in the comments of Jake’s blog, spiralling to other Word-

Press community blogs, and to the ThemeForest forums. Matt joined the dis-

cussion on Jake’s blog, saying that if ThemeForest authors had a choice about

licensing and could release their theme under the GPL, then “Envato would

still be breaking the guideline, but Jake wouldn’t, so it’d be fine for Jake to be

involved with WordCamps.”

Collis Ta’eed, CEO of Envato, responded on WP Daily, 1 outlining Envato’s

licensing model rationale. As a designer, Collis’ main concern is protecting

GPL/compatible but allows proprietary licenses for JavaScript, CSS, and

images. 100% GPL or compatible is required for promotion at Word-

Camps when WordPress-derivative works are involved, the same guide-

lines we follow on WordPress.org.

1. WP Daily has since been acquired and its content moved to Torque magazine.

Milestones: The Story of WordPress

252

http://www.poststat.us/what-now-for-commercial-theme-authors/
http://www.poststat.us/what-now-for-commercial-theme-authors/
http://themeforest.net/forums/thread/wordpressorg-bans-themeforest-members-from-participating-in-official-wordcamp-gatherings/85648?page=2
http://www.designcrumbs.com/automatically-blackballed#comment-430
http://torquemag.io/themeforest-wordcamps/

his designers’ rights, while ensuring that customers can use the resources

they purchase.

As with so many disagreements in the WordPress community, it came down

to a difference in emphasis. While the WordPress project emphasizes user

freedoms, Envato emphasizes creators’ rights. Both felt strongly that they had

the moral imperative, and backing down meant violating the principles that

underpinned their organization. The WordPress project places user freedoms

over and above every thing else. If this meant excluding theme authors who

sold on ThemeForest, then so be it.

Collis, on the other hand, wanted to make sure that theme authors felt con-

fident that their themes were safe from piracy. He was also worried about

having a GPL option for authors. He wrote, “I worry that external pressures

will force an increasing number of our authors to change their license choice,

some happily, some not.” Having just one (split) license meant that authors

wouldn’t be forced into that situation.

From the project’s perspective, theme authors could choose to sell their

themes on ThemeForest, or sell their themes under the WordPress commu-

nity’s ethos (and thus speak at WordCamps). In a podcast on WP Candy, Jake

said he didn’t feel he had a choice about where to sell his themes. ThemeFor-

est had become such an important part of his income that he would have to

forfeit that income if he moved elsewhere. After the podcast, Collis wrote a

second post on WP Daily, in which he said:

Collis surveyed ThemeForest authors to gauge support for a GPL opt-in

option. “I felt pretty guilty that our authors were paying some sort of price

I think I’ve been wrong in my stance. I would like to change that stance,

and feel that ThemeForest should offer an option for authors, if they

choose, to sell their themes with a GPL license covering the entirety of

the theme.

“

Milestones: The Story of WordPress

253

http://wpcandy.com/podcasts/035-with-special-guest-jake-caputo/
http://torquemag.io/theme-clarity/
http://torquemag.io/theme-clarity/

for selling with us, that felt pretty wrong,” says Collis. The results showed

that verified authors were split; some said they would license their themes

under the GPL, the same number said they would stick with the split license,

and 35% said that they didn’t know which license they’d choose. On March

26, Collis announced a 100%-GPL license for ThemeForest authors. Jake was

once again allowed to speak at WordCamps.

Milestones: The Story of WordPress

254

http://archive.wordpress.org/interviews/2014_04_11_Taeed.html#L86
http://notes.envato.com/news/survey-results-about-gpl-opt-in-choice/
http://www.designcrumbs.com/un-blackballed

CHAPTER 43

The Problem with Post
Formats

The 3.6 release cycle was challenging; it precipitated a new approach to

the development process. Two core WordPress philosophies, design for the

majority and again, deadlines are not arbitrary, were tested. The 3.6 release

cycle process followed the cycle started in WordPress 3.4: there was a unified

theme for the release — this time content editing. Small teams worked on

key features. Some features need more research and development than can

be achieved within a single development cycle, and the WordPress 3.6 cycle

surfaced this flaw.

Post formats were 3.6’s headline feature. Introduced in WordPress 3.1., post

formats allow theme developers to lend a unique visual treatment to specific

post types.

Post formats lacked a standard user interface. In WordPress 3.6, release leads

Mark Jaquith and Aaron Campbell tackled the problem. The release cycle had

different stages: in the scoping chat, the release lead decided on the release’s

key features, created teams, and assigned feature leads. Feature leads ran

their teams. The release leads coordinated with the teams and made the final

decision on what made the release.

Carrying out major user interface changes in just a few months is challenging,

at best. WordPress 3.5 demonstrated that to meet the deadline, the release

leads needed to put in heroic coding efforts.

The 3.6 release encountered problems; features were dropped as contributors

discovered they’d overcommitted themselves. The biggest issue was around

255

https://make.wordpress.org/core/2012/12/19/wordpress-3-6-cycle/
http://codex.wordpress.org/Post_Formats
http://codex.wordpress.org/Post_Formats
http://make.wordpress.org/core/2013/02/19/dropping-editorial-flow/

the post formats user interface, inspired by Alex King’s Post Format Admin

UI. Much thought and study went into the post formats UI. Which UI would

offer users a logical, intuitive workflow, without adding needless complexity

to the UI or the experience?

The problem was that despite time spent on wireframes and development,

the team ended up unimpressed. They created specifications, built to the

specifications, and were unhappy with the result. “It’s like ordering some-

thing from the restaurant that sounds great,” says Aaron Campbell, “but as

soon as it sits in front of you and you smell it, it’s like, ‘Ahh, definitely not

what I was in the mood for.'” Even during WordPress 3.6’s beta period, com-

munity members experimented with better approaches to the problem.

The post formats user interface.

April 29 was WordPress 3.6’s target release date. On April 23, Jen — who

had by that point stepped back from her involvement in development — said

that post formats weren’t ready. She said that the user interface was confus-

ing, underscoring WordPress’ deadlines are not arbitrary philosophy. The

thread, in addition to highlighting the post formats UI flaws, showed that not

everyone supported deadlines are not arbitrary. Ryan Boren wrote:

The four month deadline is so fanciful as to be arbitrary. It always has

been. Historically, we just can’t do a major release with a marquee UI

feature in that time, certainly not without heroic efforts of the 3.5 sort.
“

Milestones: The Story of WordPress

256

http://alexking.org/blog/2011/10/25/wordpress-post-formats-admin-ui
http://alexking.org/blog/2011/10/25/wordpress-post-formats-admin-ui
http://archive.wordpress.org/interviews/2014_06_05_Campbell.html#L71
http://ran.ge/2013/04/11/re-thinking-wordpress-post-format-ui-an-exercise/
http://milestones.pressbooks.com/files/2015/12/postformatsinterface-2.png
http://milestones.pressbooks.com/files/2015/12/postformatsinterface-2.png
http://make.wordpress.org/core/2013/04/23/post-formats-schedules-and-philosophy/
http://make.wordpress.org/core/2013/04/23/post-formats-schedules-and-philosophy/
http://make.wordpress.org/core/2013/04/23/post-formats-schedules-and-philosophy/#comment-8523

In the end, Mark and Aaron pulled post formats. A lot of work had to go in

to removing it from core; the release was heavily delayed, finally appearing

on August 1, 2013 — three months after the intended release date. The team

promised to turn the post formats feature into a plugin, but the plugin never

materialized.

Again, a user-facing feature held up a WordPress release. Because features

were tied to the development cycle, it meant that the release cycle’s duration

restricted and compromised UI features and/or major architectural changes.

Just like tagging before it, post formats was a problem too complex to solve

in a few short months. It isn’t always easy to make interface decisions. It’s

harder to iterate on design than on code.

When the release deadline approaches and a feature isn’t ready, the develop-

ment team rushes to try to get it finished. The release is delayed by a week,

and then by another week, and in some extreme cases, as was the case with

WordPress 3.6, the release is delayed by months. By that point, it becomes

impossible to give a firm date for when a release will happen. And the process

becomes more complicated as the release lead oscillates between trying to

improve a feature and deciding to pull it. Up until 3.6, there was no contin-

gency plan built into the development process that allowed for these chal-

lenges in designing a user-facing UI.

The solution to this problem was available, and always had been available,

within WordPress’ infrastructure. Twice before, core user features had been

pulled from plugins into core — widgets and menus. Widgets had been built

for the WordPress.com audience, turned into a plugin, and brought in to core.

So we end up facing decisions like this. Every single release we wonder

if we have to punt the marquee feature. Punting often requires major

surgery that can be as much work as finishing the feature. Punting is

demoralizing. Four month releases are empty promises that bring us

here.

Milestones: The Story of WordPress

257

http://make.wordpress.org/core/2013/05/29/post-formats-ui-is-exiting-core-will-live-as-a-plugin/
https://core.trac.wordpress.org/ticket/24452

Menus had stumped the core development team and they solved that prob-

lem with a plugin. In both these cases, feature design and testing happened

long before approaching core. And as the WordPress 3.6 cycle dragged on,

a small group of designers worked on a new WordPress feature in a plu-

gin: it was a project called MP6. The project would be the flagship for a new

approach to development that had a lasting influence on how WordPress fea-

tures were developed.

Milestones: The Story of WordPress

258

CHAPTER 44

MP6

By 2013, WordPress’ admin had seen little change since the Crazyhorse

redesign in 2008. Change happened in 2013, though it didn’t only result in a

new look for WordPress. WordPress feature development changed, introduc-

ing a new approach in which feature design, feedback, and iteration used a

plugin that was eventually merged with core.

In January 2013, Ben Dunkle proposed new, flat icons. The WordPress admin

was outdated, particularly on retina displays where the icons pixelated. Flat

icons would scale properly and also allow designers to color icons using CSS.

Andrew Ozz checked in the changes.

The changes kicked off huge discussions about icons, a new trac ticket, and a

long discussion on the UI P2. People were divided on the icons. Some liked

them, but felt that they didn’t fit WordPress’ admin design; modern icons

only emphasized how dated the rest of the admin had become. Consensus

didn’t materialize. Mark, who was release lead at the time, decided not to put

the changes in WordPress 3.6. Instead, designers interested in redesigning

the admin could iterate on the design in a plugin called MP6.

Matt Miklic (MT), the designer who had put the original coat of paint on

Crazyhorse, helmed MP6. Via Skype, Matt asked MT and Ben Dunkle to

reimagine WordPress’ admin, consider how a redesign could work, and set

parameters. MT believed that they ought to respect the research that

informed Crazyhorse’s UI. Instead of iterating the layout and functionality,

they focused on an aesthetic refresh.

Both Matt and MT were keenly aware of the issues and challenges in each

major WordPress admin redesign. They wanted MP6 to be different.

259

https://core.trac.wordpress.org/ticket/23333
https://core.trac.wordpress.org/changeset/23369
https://core.trac.wordpress.org/ticket/23415
http://make.wordpress.org/ui/2013/02/12/discuss-icons/
http://wordpress.org/plugins/mp6/

Shuttle, for example, had been cut off from the rest of the community,

designed by a cloistered group of designers trading comps and slowly losing

touch with “the client.” No one person was responsible for Shuttle’s overall

vision; there was no accountability.

By contrast, the Happy Cog team looked at WordPress with a fresh set of eyes.

Their distance allowed them to treat WordPress as a piece of software, not

as an object of devotion. They stayed in touch with their client — Matt — but

were removed from the community’s thoughts and opinions. MP6 solicited

feedback from all of the people with a stake in the project. That brought its

own challenges — whose feedback was the most legitimate? What should be

integrated? When was someone just complaining for the sake of it?

Crazyhorse emphasized the importance of in-depth user testing. With all the

testing on Crazyhorse, MT knew that he didn’t want to carry out a struc-

tural overhaul, conduct extensive tests, and gather the data needed to prove

improvement.

The MP6 project took a different approach. Like Shuttle, a group of designers

worked alongside the free software project. Instead of a mailing list, they had

a Skype channel so that they could talk in private, but anyone was allowed

to join in. “Even though the group worked in private,” says MT, “the door

into the group we were working on was open, so if anyone said they were

interested they could just walk in.” This allowed people less comfortable with

WordPress’ chaotic bazaar to participate. Designers traded ideas and feed-

back — without the danger of someone coming out of nowhere and tearing an

idea down before it was even fully formed.

The MP6 project took advantage of WordPress’ plugin architecture; work

took place on a plugin hosted on the WordPress plugin directory. Anyone

could install the plugin and see the changes in their admin. Every week,

the group shared a release and a report open to public feedback. This open

process meant that community members could be involved on different lev-

els. It also meant that the group could never steer too far off course. The core

team was always aware of what was going on with MP6 and could provide

Milestones: The Story of WordPress

260

http://archive.wordpress.org/interviews/2014_02_04_Thomas.html#L76

feedback. More designers were involved than with Shuttle: the group grew to

fifteen members. With MT as lead, they avoided the “too many cooks” prob-

lem. The designers and the community accepted that MT had the final say on

the design.

The MP6 project was announced in March 2013. The design process began

with MT playing around with the CSS. He started out with a unified, black,

L-shaped bar around the top and the side of the admin screen: “the idea,” he

said, “was that the black would feel like a background and the white would

feel like the sheet of paper lying on top of it, so it would unify these disparate

things.” Once MT assembled the basic visual, the contributors refined the

design. These changes happened iteratively. The community saw a report and

a new plugin release each week, on which they gave feedback.

Challenges arose. Google web fonts caused heated discussion. Web fonts are

designed specifically for the web. They’re often hosted in a font repository. A

designer uses a CSS declaration to connect to the repository and the font is

delivered to a website or app. MP6 uses the Open Sans font, which means that

the font in WordPress’ admin screens is hosted on Google’s servers. When-

ever a user logs into their admin, Google serves the fonts. Some don’t want

to connect to Google from their website; this also causes problems for peo-

ple in countries where Google is blocked. Bundling the fonts with WordPress,

however, requires a huge amount of specialized work to ensure that they

work across platforms, browsers, and in different languages. In the end, they

decided to use Google web fonts. A plugin was created to allow users to shut

them off.

Despite minor hitches, the MP6 project went smoothly. Joen Asmussen,

who’d been a part of the Shuttle project eight years earlier said, “I would say

that MP6 did everything right that Shuttle did wrong.”

Over the eight years since the first attempt to redesign WordPress’ admin,

WordPress had matured. When things are done behind closed doors, people

feel disenfranchised, and yet the bazaar style model doesn’t suit every, single

Milestones: The Story of WordPress

261

http://make.wordpress.org/ui/2013/03/09/as-a-continuation-of-the-work-begun-in/
http://archive.wordpress.org/interviews/2014_02_04_Thomas.html#L104
http://archive.wordpress.org/interviews/2014_02_04_Thomas.html#L104
http://make.wordpress.org/core/2013/11/11/open-sans-bundling-vs-linking/
http://archive.wordpress.org/interviews/2013_11_05_Asmussen.html#L73

aspect of software development. It’s within this tension that a balance must

be struck, with space for ideas to flourish.

The MP6 plugin merged with WordPress 3.8, released in December 2013,

demonstrating that, while it may take a while to get there, harmonious design

in a free software project is possible.

The Write screen in the WordPress 3.8 admin.

All of this happened as 3.6 rumbled on. Development continued on the core

product, MP6 development happened separately; it wasn’t constrained by

WordPress’ release timeline. MT and the designers iterated quickly; users

installed the plugin to test it and offer feedback. This was a new process that

hadn’t been possible before. To test new features in the past, a user would

have to run trunk. By developing the feature as a plugin, a community mem-

ber could focus by helping with the sole plugin that they were interested in.

MP6 was proving to be a success, and in the summer of 2013, it was decided,

for the first time, to develop two versions of WordPress simultaneously —

3.7 and 3.8. WordPress 3.7 was a two-month, platform-focused, stability and

security release lead by Andrew Nacin and John Cave. New features in 3.8

were developed as a plugin.

Milestones: The Story of WordPress

262

http://milestones.pressbooks.com/files/2015/11/mp6.jpg
http://milestones.pressbooks.com/files/2015/11/mp6.jpg

Nacin wrote:

While the project prepared to merge MP6 as a plugin in WordPress 3.8, an

opportunity arose to do automatic updates — something that had been talked

of within the project for years. Automatic updates had long been a goal, pre-

viously unachievable. Automatic updates needed the proper code structure to

be in place on WordPress.org, as well as community trust. Community mem-

bers needed to be okay with WordPress changing their site automatically.

WordPress has collected data since WordPress 2.3 that allows WordPress.org

to create personalized automatic updates. WordPress uses the data to make

sure that a site receives an update compatible with its PHP version and site

settings. In the few failure cases, the user gets an error message with an email

address that they can use to email the core developers who will fix their web-

site. As of late 2014, automatic updates are for point releases only. So while

major releases of WordPress are not automatic (3.7, 3.8, etc.) point releases

are (3.7.1, 3.8.1, for example). This means that security updates and bug fixes

can easily be pushed out to all WordPress users.

Within the space of just two short releases — 3.7 and 3.8 — big changes

transformed the software and the development process. Automatic updates

mean that WordPress users are safer than ever. WordPress 3.8 saw the first

release in which a feature developed as a plugin merged with core. This finally

decoupled core development from feature development. So many past delays

This “features as plugins” method* will allow teams to conceptualize,

design, and fully develop features before landing them in core. This

removes a lot of the risk of a particular feature introducing uncertainty

into a release (see also 3.6, 3.5, 3.4 …) and provides ample room for

experimentation, testing, and failure. As we’ve seen with MP6, the

autonomy given to a feature team can also allow for more rapid develop-

ment. And in a way, 3.7 provides a bit of a buffer while we get this new

process off the ground.

“

Milestones: The Story of WordPress

263

https://make.wordpress.org/core/2013/08/07/wordpress-3-8-meeting-thursday-august-8/

and setbacks happened because a feature held up a release. It gave develop-

ers more scope for experimentation and created safe spaces for contributors

to get involved with core development. While the MP6 admin redesign was

the first plugin integrated under this model, since then, feature-plugins have

brought in a widget customizer, a new theme experience, and widget func-

tionality changes. Experiments are ongoing in image editing, front-end edit-

ing, user session management, and menus.

Milestones: The Story of WordPress

264

http://make.wordpress.org/core/2013/10/23/mp6-3-8-proposal/

	Milestones: The Story of WordPress
	Milestones: The Story of WordPress
	
	Contents
	Introduction
	Part One
	Hello World
	The Only Blogger in Corsica
	The Blogging Software Dilemma
	Part Two
	Guiding Principles
	The GPL
	WordPress' First Developers
	Inside the Bazaar
	Support and Documentation
	Freedom Zero
	WordPress 1.2 "Mingus"
	The Birth of wp-hackers
	Part Three
	Themes
	Development in a Funnel
	A New Logo
	WordPress Incorporated
	WordPress.com
	Akismet
	Shuttle
	Automattic
	Growing Pains
	WordCamp 2006
	Speeding Up the Release Cycle
	Trademarks
	Habari
	Part Four
	Creating a Folksonomy
	Sponsored Themes
	Update Notifications
	Happy Cog Redesign
	Premium Themes
	Part Five
	Riding the Crazyhorse
	Themes Are GPL Too
	Improving Infrastructure
	Meeting in Person
	Update Notifications Redux
	The WordPress Foundation
	WordPress 3.0
	The WordCamp Guidelines
	Dealing With a Growing Project
	Thesis
	Part Six
	The Transition to Release Leads
	The Community Summit
	The Spirit of the GPL
	The Problem with Post Formats
	MP6

